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Chapter 1. Introduction

Welcome to Programming

I love programming. | enjoy the challenge to not only make a working program, but to do so with
style. Programming is like poetry. It conveys a message, not only to the computer, but to those
who modify and use your program. With a program, you build your own world with your own
rules. You create your world according to your conception of both the problem and the solution.
Masterful programmers create worlds with programs that are clear and succinct, much like a
poem or essay.

One of the greatest programmers, Donald Knuth, describes programming not as telling a
computer how to do something, but telling a person how they would instruct a computer to do
something. The point is that programs are meant to be read by people, not just computers. Your
programs will be modified and updated by others long after you move on to other projects. Thus,
programming is not as much about communicating to a computer as it is communicating to those
who come after you. A programmer is a problem-solver, a poet, and an instructor all at once.
Your goal is to solve the problem at hand, doing so with balance and taste, and teach your
solution to future programmers. | hope that this book can teach at least some of the poetry and
magic that makes computing exciting.

Most introductory books on programming frustrate me to no end. At the end of them you can still
ask "how does the computer really work?" and not have a good answer. They tend to pass over
topics that are difficult even though they are important. | will take you through the difficult issues
because that is the only way to move on to masterful programming. My goal is to take you from
knowing nothing about programming to understanding how to think, write, and learn like a
programmer. You won't know everything, but you will have a background for how everything fits
together. At the end of this book, you should be able to do the following:

- Understand how a program works and interacts with other programs

Read other people’s programs and learn how they work

Learn new programming languages quickly
- Learn advanced concepts in computer science quickly

I will not teach you everything. Computer science is a massive field, especially when you
combine the theory with the practice of computer programming. However, | will attempt to get
you started on the foundations so you can easily go wherever you want afterwards.

There is somewhat of a chicken and egg problem in teaching programming, especially assembly
language. There is a lot to learn - it's almost too much to learn almost at once, but each piece
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depends on all the others. Therefore, you must be patient with yourself and the computer while
learning to program. If you don’t understand something the first time, reread it. If you still don’t
understand it, it is sometimes best to take it by faith and come back to it later. Often after more
exposure to programming the ideas will make more sense. Don'’t get discouraged. It's a long
climb, but very worthwhile.

At the end of each chapter are three sets of review exercises. The first set is more or less
regurgitation - they check to see if can you give back what you learned in the chapter. The second
set contains application questions - they check to see if you can apply what you learned to solve
problems. The final set is to see if you are capable of broadening your horizons. Some of these
guestions may not be answerable until later in the book, but they give you some things to think
about. Other questions require some research into outside sources to discover the answer. Still
others require you to simply analyze your options and explain a best solution. Many of the
guestions don’t have right or wrong answers, but that doesn’t mean they are unimportant.
Learning the issues involved in programming, learning how to research answers, and learning
how to look ahead are all a major part of a programmer’s work.

If you have problems that you just can’t get past, there is a mailing list for this book where
readers can discuss and get help with what they are reading. The address is
pgubook-readers@nongnu.org . This mailing list is open for any type of question or
discussion along the lines of this book. You can subscribe to this list by going to
http://mail.nongnu.org/mailman/listinfo/pgubook-readers.

Your Tools

This book teaches assembly language for x86 processors and the GNU/Linux operating system.
Therefore we will be giving all of the examples using the GNU/Linux standard GCC tool set. If
you are not familiar with GNU/Linux and the GCC tool set, they will be described shortly. If you
are new to Linux, you should check out the guide available at http://rute.sourceforgé/hat/|

intend to show you is more about programming in general than using a specific tool set on a
specific platform, but standardizing on one makes the task much easier.

Those new to Linux should also try to get involved in their local GNU/Linux User’s Group.
User’s Group members are usually very helpful for new people, and will help you from
everything from installing Linux to learning to use it most efficiently. A listing of GNU/Linux
User’s Groups is available at http://www.linux.org/groups/

All of these programs have been tested using Red Hat Linux 8.0, and should work with any other

1. Thisis quite a large document. You certainly don't need to know everything to get started with this book.
You simply need to know how to navigate from the command line and how to use an editwctikeemacs,
orvi (or others).
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GNUJ/Linux distribution, toc’ They will not work with non-Linux operating systems such as
BSD or other systems. However, all of thkills learned in this book should be easily transferable
to any other system.

If you do not have access to a GNU/Linux machine, you can look for a hosting provider who
offers a Linuxshell accountwhich is a command-line only interface to a Linux machine. There
are many low-cost shell account providers, but you have to make sure that they match the
requirements above (i.e. - Linux on x86). Someone at your local GNU/Linux User’s Group may
be able to give you one as well. Shell accounts only require that you already have an Internet
connection and a telnet program. If you use Windows®, you already have a telnet client - just
click onstart , thenrun , then type intelnet . However, it is usually better to download PuTTY
from http://www.chiart.greenend.co.uk/~sgtatham/putty/ because Windows’ telnet has some
weird problems. There are a lot of options for the Macintosh, too. NiftyTelnet is my favorite.

If you don’t have GNU/Linux and can't find a shell account service, then you can download
Knoppix from http://www.knoppix.org/ Knoppix is a GNU/Linux distribution that boots from CD
so that you don’t have to actually install it. Once you are done using it, you just reboot and
remove the CD and you are back to your regular operating system.

So what is GNU/Linux? GNU/Linux is an operating system modeled after UNIX®. The GNU
part comes from the GNU Project (http://www.gnu.ofgihich includes most of the programs
you will run, including the GCC tool set that we will use to program with. The GCC tool set
contains all of the programs necessary to create programs in various computer languages.

Linux is the name of th&ernel The kernel is the core part of an operating system that keeps
track of everything. The kernel is both an fence and a gate. As a gate, it allows programs to access
hardware in a uniform way. Without the kernel, you would have to write programs to deal with
every device model ever made. The kernel handles all device-specific interactions so you don't
have to. It also handles file access and interaction between processes. For example, when you
type, your typing goes through several programs before it hits your editor. First, the kernel is
what handles your hardware, so it is the first to receive notice about the keypress. The keyboard
sends irscancodes$o the kernel, which then converts them to the actual letters, numbers, and
symbols they represent. If you are using a windowing system (like Microsoft Windows® or the X
Window System), then the windowing system reads the keypress from the kernel, and delivers it
to whatever program is currently in focus on the user’s display.

Example 1-1. How the computer processes keyboard sigals

Keyboard -> Kernel -> Windowing system -> Application program

2. By "GNU/Linux distribution”, | mean an x86 GNU/Linux distribution. GNU/Linux distributions for the
Power Macintosh, the Alpha processor, or other processors will not work with this book.

3. The GNU Project is a project by the Free Software Foundation to produce a complete, free operating
system.
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The kernel also controls the flow of information between programs. The kernel is a program’s

gate to the world around it. Every time that data moves between processes, the kernel controls the
messaging. In our keyboard example above, the kernel would have to be involved for the
windowing system to communicate the keypress to the application program.

As a fence, the kernel prevents programs from accidentally overwriting each other’s data and
from accessing files and devices that they don’t have permission to. It limits the amount of
damage a poorly-written program can do to other running programs.

In our case, the kernel is Linux. Now, the kernel all by itself won’t do anything. You can't even

boot up a computer with just a kernel. Think of the kernel as the water pipes for a house. Without
the pipes, the faucets won'’t work, but the pipes are pretty useless if there are no faucets. Together,
the user applications (from the GNU project and other places) and the kernel (Linux) make up the
entire operating system, GNU/Linux.

For the most part, this book will be using the computer’s low-level assembly language. There are
essentially three kinds of languages:

Machine Language

This is what the computer actually sees and deals with. Every command the computer sees
is given as a number or sequence of numbers.

Assembly Language

This is the same as machine language, except the command numbers have been replaced by
letter sequences which are easier to memorize. Other small things are done to make it easier
as well.

High-Level Language

High-level languages are there to make programming easier. Assembly language requires
you to work with the machine itself. High-level languages allow you to describe the program
in a more natural language. A single command in a high-level language usually is equivalent
to several commands in an assembly language.

In this book we will learn assembly language, although we will cover a bit of high-level
languages. Hopefully by learning assembly language, your understanding of how programming
and computers work will put you a step ahead.



Chapter 2. Computer Architecture

Before learning how to program, you need to first understand how a computer interprets
programs. You don’t need a degree in electrical engineering, but you need to understand some
basics.

Modern computer architecture is based off of an architecture called the Von Neumann
architecture, named after its creator. The Von Neumann architecture divides the computer up into
two main parts - the CPU (for Central Processing Unit) and the memory. This architecture is used
in all modern computers, including personal computers, supercomputers, mainframes, and even
cell phones.

Structure of Computer Memory

To understand how the computer views memory, imagine your local post office. They usually

have a room filled with PO Boxes. These boxes are similar to computer memory in that each are
numbered sequences of fixed-size storage locations. For example, if you have 256 megabytes of
computer memory, that means that your computer contains roughly 256 million fixed-size storage
locations. Or, to use our analogy, 256 million PO Boxes. Each location has a number, and each
location has the same, fixed-length size. The difference between a PO Box and computer memory
is that you can store all different kinds of things in a PO Box, but you can only store a single
number in a computer memory storage location.

| 2204 ||| L2205 ||| [ 2206 ||| 2207 |
| | | |
| 2208 | ||| 2209 |||[ 2210 ||| 2211 |
| | | |
| 2212 (| [ 2213 ||| 2214 ||| 2215 |
| | | |
| 2216 | ||| 2217 ||| 2218 ||| 2219 |
| | | |

Memory locations are like PO Boxes

You may wonder why a computer is organized this way. It is because it is simple to implement. If
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the computer were composed of a lot of differently-sized locations, or if you could store different
kinds of data in them, it would be difficult and expensive to implement.

The computer’'s memory is used for a number of different things. All of the results of any
calculations are stored in memory. In fact, everything that is "stored" is stored in memory. Think
of your computer at home, and imagine what all is stored in your computer’'s memory.

« The location of your cursor on the screen

« The size of each window on the screen

« The shape of each letter of each font being used
« The layout of all of the controls on each window
« The graphics for all of the toolbar icons

« The text for each error message and dialog box
« The list goes on and on...

In addition to all of this, the Von Neumann architecture specifies that not only computer data
should live in memory, but the programs that control the computer’s operation should live there,
too. In fact, in a computer, there is no difference between a program and a program’s data except
how it is used by the computer. They are both stored and accessed the same way.

The CPU

So how does the computer function? Obviously, simply storing data doesn’t do much help - you
need to be able to access, manipulate, and move it. That's where the CPU comes in.

The CPU reads in instructions from memory one at a time and executes them. This is known as
thefetch-execute cycld@he CPU contains the following elements to accomplish this:

« Program Counter

« Instruction Decoder

- Data bus

« General-purpose registers
« Arithmetic and logic unit

Theprogram counteis used to tell the computer where to fetch the next instruction from. We
mentioned earlier that there is no difference between the way data and programs are stored, they
are just interpreted differently by the CPU. The program counter holds the memory address of the
next instruction to be executed. The CPU begins by looking at the program counter, and fetching
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whatever number is stored in memory at the location specified. It is then passed on to the
instruction decodewhich figures out what the instruction means. This includes what process
needs to take place (addition, subtraction, multiplication, data movement, etc.) and what memory
locations are going to be involved in this process. Computer instructions usually consist of both
the actual instruction and the list of memory locations that are used to carry it out.

Now the computer uses tliata busto fetch the memory locations to be used in the calculation.
The data bus is the connection between the CPU and memory. It is the actual wire that connects
them. If you look at the motherboard of the computer, the wires that go out from the memory are
your data bus.

In addition to the memory on the outside of the processor, the processor itself has some special,
high-speed memory locations called registers. There are two kinds of regigersral registers
andspecial-purpose register§&eneral-purpose registers are where the main action happens.
Addition, subtraction, multiplication, comparisions, and other operations generally use
general-purpose registers for processing. However, computers have very few general-purpose
registers. Most information is stored in main memory, brought in to the registers for processing,
and then put back into memory when the processing is complgpedial-purpose registeesre
registers which have very specific purposes. We will discuss these as we come to them.

Now that the CPU has retrieved all of the data it needs, it passes on the data and the decoded
instruction to thearithmetic and logic unitor further processing. Here the instruction is actually
executed. After the results of the computation have been calculated, the results are then placed on
the data bus and sent to the appropriate location in memory or in a register, as specified by the
instruction.

This is a very simplified explanation. Processors have advanced quite a bit in recent years, and
are now much more complex. Although the basic operation is still the same, it is complicated by
the use of cache hierarchies, superscalar processors, pipelining, branch prediction, out-of-order
execution, microcode translation, coprocessors, and other optimizations. Don’t worry if you don’t
know what those words mean, you can just use them as Internet search terms if you want to learn
more about the CPU.

Some Terms

Computer memory is a numbered sequence of fixed-size storage locations. The number attached
to each storage location is called i#ddress The size of a single storage location is callduyse
On x86 processors, a byte is a number between 0 and 255.

You may be wondering how computers can display and use text, graphics, and even large
numbers when all they can do is store numbers between 0 and 255. First of all, specialized
hardware like graphics cards have special interpretations of each number. When displaying to the



Chapter 2. Computer Architecture

screen, the computer uses ASCII code tables to translate the numbers you are sending it into
letters to display on the screen, with each number translating to exactly one letter or numeral.
For example, the capital letter A is represented by the number 65. The numeral 1 is represented
by the number 49. So, to print out "HELLO", you would actually give the computer the sequence
of numbers 72, 69, 76, 76, 79. To print out the number 100, you would give the computer the
sequence of numbers 49, 48, 48. A list of ASCII characters and their numeric codes is found in
Appendix D

In addition to using numbers to represent ASCII characters, you as the programmer get to make
the numbers mean anything you want them to, as well. For example, if | am running a store, |
would use a number to represent each item | was selling. Each number would be linked to a series
of other numbers which would be the ASCII codes for what | wanted to display when the items
were scanned in. | would have more numbers for the price, how many | have in inventory, and so
on.

So what about if we need numbers larger than 255? We can simply use a combination of bytes to
represent larger numbers. Two bytes can be used to represent any number between 0 and 65536.
Four bytes can be used to represent any number between 0 and 4294967295. Now, it is quite
difficult to write programs to stick bytes together to increase the size of your numbers, and
requires a bit of math. Luckily, the computer will do it for us for numbers up to 4 bytes long. In

fact, four-byte numbers are what we will work with by default.

We mentioned earlier that in addition to the regular memory that the computer has, it also has
special-purpose storage locations calegisters Registers are what the computer uses for
computation. Think of a register as a place on your desk - it holds things you are currently
working on. You may have lots of information tucked away in folders and drawers, but the stuff
you are working on right now is on the desk. Registers keep the contents of numbers that you are
currently manipulating.

On the computers we are using, registers are each four bytes long. The size of a typical register is
called a computer'siord size. x86 processors have four-byte words. This means that it is most
natural on these computers to do computations four bytes at a time. This gives us roughly 4

billion values.

Addresses are also four bytes (1 word) long, and therefore also fit into a register. x86 processors
can access up to 4294967296 bytes if enough memory is installed. Notice that this means that we
can store addresses the same way we store any other number. In fact, the computer can'’t tell the
difference between a value that is an address, a value that is a number, a value that is an ASCII
code, or a value that you have decided to use for another purpose. A number becomes an ASCII
code when you attempt to display it. A number becomes an address when you try to look up the

1. With the advent of international character sets and Unicode, this is not entirely true anymore. However,
for the purposes of keeping this simple for beginners, we will use the assumption that one number translates
directly to one character. For more information, sgg@endix D
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byte it points to. Take a moment to think about this, because it is crucial to understanding how
computer programs work.

Addresses which are stored in memory are also cgltadters because instead of having a
regular value in them, they point you to a different location in memory.

As we've mentioned, computer instructions are also stored in memory. In fact, they are stored
exactly the same way that other data is stored. The only way the computer knows that a memory
location is an instruction is that a special-purpose register called the instruction pointer points to
them at one point or another. If the instruction pointer points to a memory word, it is loaded as an
instruction. Other than that, the computer has no way of knowing the difference between
programs and other types of déta.

Interpreting Memory

Computers are very exact. Because they are exact, programmers have to be equally exact. A
computer has no idea what your program is supposed to do. Therefore, it will only do exactly
what you tell it to do. If you accidentally print out a regular number instead of the ASCII codes
that make up the number’s digits, the computer will let you - and you will wind up with jibberish
on your screen (it will try to look up what your number represents in ASCII and print that). If you
tell the computer to start executing instructions at a location containing data instead of program
instructions, who knows how the computer will interpret that - but it will certainly try. The
computer will execute your instructions in the exact order you specify, even if it doesn’t make
sense.

The point is, the computer will do exactly what you tell it, no matter how little sense it makes.
Therefore, as a programmer, you need to know exactly how you have your data arranged in
memory. Remember, computers can only store numbers, so letters, pictures, music, web pages,
documents, and anything else are just long sequences of numbers in the computer, which
particular programs know how to interpret.

For example, say that you wanted to store customer information in memory. One way to do so
would be to set a maximum size for the customer’s name and address - say 50 ASCII characters
for each, which would be 50 bytes for each. Then, after that, have a number for the customer’s age
and their customer id. In this case, you would have a block of memory that would look like this:

Start of Record:
Customer’s name (50 bytes) - start of record
Customer’s address (50 bytes) - start of record + 50 bytes
Customer’'s age (1 word - 4 bytes) - start of record + 100 bytes

2. Note that here we are talking about general computer theory. Some processors and operating systems
actually mark the regions of memory that can be executed with a special marker that indicates this.
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Customer’s id number (1 word - 4 bytes) - start of record + 104 bytes

This way, given the address of a customer record, you know where the rest of the data lies.
However, it does limit the customer’s name and address to only 50 ASCII characters each.

What if we didn’t want to specify a limit? Another way to do this would be to have in our record
pointers to this information. For example, instead of the customer’s name, we would have a
pointer to their name. In this case, the memory would look like this:

Start of Record:
Customer’s name pointer (1 word) - start of record
Customer’s address pointer (1 word) - start of record + 4
Customer’'s age (1 word) - start of record + 8
Customer’s id number (1 word) - start of record + 12

The actual name and address would be stored elsewhere in memory. This way, it is easy to tell
where each part of the data is from the start of the record, without explicitly limitting the size of
the name and address. If the length of the fields within our records could change, we would have
no idea where the next field started. Because records would be different sizes, it would also be
hard to find where the next record began. Therefore, almost all records are of fixed lengths.
Variable-length data is usually store separately from the rest of the record.

Data Accessing Methods

Processors have a number of different ways of accessing data, known as addressing modes. The
simplest mode ismmediate modan which the data to access is embedded in the instruction

itself. For example, if we want to initialize a register to 0, instead of giving the computer an
address to read the 0 from, we would specify immediate mode, and give it the number O.

In theregister addressing mod#he instruction contains a register to access, rather than a
memory location. The rest of the modes will deal with addresses.

In thedirect addressing modéhe instruction contains the memory address to access. For
example, | could say, please load this register with the data at address 2002. The computer would
go directly to byte number 2002 and copy the contents into our register.

In theindexed addressing mogdie instruction contains a memory address to access, and also
specifies arndex registetto offset that address. For example, we could specify address 2002 and
an index register. If the index register contains the number 4, the actual address the data is loaded
from would be 2006. This way, if you have a set of numbers starting at location 2002, you can
cycle between each of them using an index register. On x86 processors, you can also specify a
multiplier for the index. This allows you to access memory a byte at a time or a word at a time (4
bytes). If you are accessing an entire word, your index will need to be multiplied by 4 to get the

10



Chapter 2. Computer Architecture

exact location of the fourth element from your address. For example, if you wanted to access the
fourth byte from location 2002, you would load your index register with 3 (remember, we start
counting at 0) and set the multiplier to 1 since you are going a byte at a time. This would get you
location 2005. However, if you wanted to access the fourth word from location 2002, you would
load your index register with 3 and set the multiplier to 4. This would load from location 2014 -
the fourth word. Take the time to calculate these yourself to make sure you understand how it
works.

In theindirect addressing mod¢he instruction contains a register that contains a pointer to
where the data should be accessed. For example, if we used indirect addressing mode and
specified th&veax register, and théceax register contained the value 4, whatever value was at
memory location 4 would be used. In direct addressing, we would just load the value 4, but in
indirect addressing, we use 4 as the address to use to find the data we want.

Finally, there is thdase pointer addressing madghis is similar to indirect addressing, but you
also include a number called tbésetto add to the register’s value before using it for lookup. We
will use this mode quite a bit in this book.

In the Section callethterpreting Memorywe discussed having a structure in memory holding
customer information. Let's say we wanted to access the customer’s age, which was the eighth
byte of the data, and we had the address of the start of the structure in a register. We could use
base pointer addressing and specify the register as the base pointer, and 8 as our offset. This is a
lot like indexed addressing, with the difference that the offset is constant and the pointer is held in
a register, and in indexed addressing the offset is in a register and the pointer is constant.

There are other forms of addressing, but these are the most important ones.

Review

Know the Concepts

« Describe the fetch-execute cycle.

« What is a register? How would computation be more difficult without registers?

« How do you represent numbers larger than 2557

« How big are the registers on the machines we will be using?

« How does a computer know how to interpret a given byte or set of bytes of memory?
« What are the addressing modes and what are they used for?

« What does the instruction pointer do?

11
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Use the Concepts

« What data would you use in an employee record? How would you lay it out in memory?

- If I had the pointer the the beginning of the employee record above, and wanted to access a
particular piece of data inside of it, what addressing mode would | use?

+ In base pointer addressing mode, if you have a register holding the value 3122, and an offset of
20, what address would you be trying to access?

+ Inindexed addressing mode, if the base address is 6512, the index register has a 5, and the
multiplier is 4, what address would you be trying to access?

+ Inindexed addressing mode, if the base address is 123472, the index register has a 0, and the
multiplier is 4, what address would you be trying to access?

« Inindexed addressing mode, if the base address is 9123478, the index register has a 20, and the
multiplier is 1, what address would you be trying to access?

Going Further

« What are the minimum number of addressing modes needed for computation?
« Why include addressing modes that aren’t strictly needed?

+ Research and then describe how pipelining (or one of the other complicating factors) affects
the fetch-execute cycle.

« Research and then describe the tradeoffs between fixed-length instructions and variable-length
instructions.

12
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In this chapter you will learn the process for writing and building Linux assembly-language
programs. In addition, you will learn the structure of assembly-language programs, and a few
assembly-language commands. As you go through this chapter, you may want to refer also to
Appendix BandAppendix F

These programs may overwhelm you at first. However, go through them with diligence, read
them and their explanations as many times as necessary, and you will have a solid foundation of
knowledge to build on. Please tinker around with the programs as much as you can. Even if your
tinkering does not work, every failure will help you learn.

Entering in the Program

Okay, this first program is simple. In fact, it's not going to do anything but exit! It's short, but it
shows some basics about assembly language and Linux programming. You need to enter the
program in an editor exactly as written, with the filenagmie.s . The program follows. Don’t
worry about not understanding it. This section only deals with typing it in and runningthieln
Section calledDutline of an Assembly Language Prograna will describe how it works.

#PURPOSE: Simple program that exits and returns a
# status code back to the Linux kernel
#

#INPUT: none
#

#OUTPUT:; returns a status code. This can be viewed

# by typing

#

# echo $?

#

# after running the program

#

#VARIABLES:

# %eax holds the system call number
# %ebx holds the return status

#

.section .data

.section .text
.globl _start

13
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_start:
movl $1, %eax # this is the linux kernel command
# number (system call) for exiting
# a program

movl $0, %ebx # this is the status number we will
# return to the operating system.
# Change this around and it will
# return different things to
# echo $?

int $0x80 # this wakes up the kernel to run
# the exit command

What you have typed in is called tlseurce codeSource code is the human-readable form of a
program. In order to transform it into a program that a computer can run, we nasdgdmble
andlink it.

The first step is tassemblét. Assembling is the process that transforms what you typed into
instructions for the machine. The machine itself only reads sets of numbers, but humans prefer
words. Anassembly language a more human-readable form of the instructions a computer
understands. Assembling transforms the human-readable file into a machine-readable one. To
assembly the program type in the command

as exit.s -0 exit.o

as is the command which runs the assembdeit,s  is the source file, ané exit.o tells the
assemble to put it’'s output in the figzit.o .exit.o is anobject file An object file is code that

is in the machine’s language, but has not been completely put together. In most large programs,
you will have several source files, and you will convert each one into an object fildinkeeis

the program that is responsible for putting the object files together and adding information to it so
that the kernel knows how to load and run it. In our case, we only have one object file, so the
linker is only adding the information to enable it to run.[iitk the file, enter the command

Id exit.o -0 exit

Id is the command to run the linkexxit.o is the object file we want to link, and exit
instructs the linker to output the new program into a file cadleid .* If any of these commands
reported errors, you have either mistyped your program or the command. After correcting the

1. Ifyou are new to Linux and UNIX®, you may not be aware that files don’t have to have extensions. In
fact, while Windows® uses thexe extension to signify an executable program, UNIX executables usually
have no extension.
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program, you have to re-run all the commandsu must always re-assemble and re-link
programs after you modify the source file for the changes to occur in the progi@nctan run
exit by typing in the command

Jexit

The./ is used to tell the computer that the program isn’t in one of the normal program
directories, but is the current directory instéa¢bu’ll notice when you type this command, the
only thing that happens is that you'll go to the next line. That's because this program does
nothing but exit. However, immediately after you run the program, if you type in

echo $?

It will say 0. What is happening is that every program when it exits gives Linusxérstatus

code which tells it if everything went all right. If everything was okay, it returns 0. UNIX

programs return numbers other than zero to indicate failure or other errors, warnings, or statuses.
The programmer determines what each number means. You can view this code by tygimg in

$72. In the following section we will look at what each part of the code does.

Outline of an Assembly Language Program

Take a look at the program we just entered. At the beginning there are lots of lines that begin with
hashes#). These areommentsComments are not translated by the assembler. They are used
only for the programmer to talk to anyone who looks at the code in the future. Most programs
you write will be modified by others. Get into the habit of writing comments in your code that

will help them understand both why the program exists and how it works. Always include the
following in your comments:

« The purpose of the code
« An overview of the processing involved
- Anything strange your program does and why it dogs it

After the comments, the next line says

.section .data

2. . refersto the current directory in Linux and UNIX systems.

3. You'll find that many programs end up doing things strange ways. Usually there is a reason for that, but,
unfortunately, programmers never document such things in their comments. So, future programmers either
have to learn the reason the hard way by modifying the code and watching it break, or just leaving it alone
whether it is still needed or not. You showdtivaysdocument any strange behavior your program performs.
Unfortunately, figuring out what is strange and what is straightforward comes mostly with experience.
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Anything starting with a period isn’t directly translated into a machine instruction. Instead, it's an
instruction to the assembler itself. These are calegembler directivesr pseudo-operations
because they are handled by the assembler and are not actually run by the computer. The
.section command breaks your program up into sections. This command starts the data
section, where you list any memory storage you will need for data. Our program doesn’t use any,
so we don’t need the section. It’s just here for completeness. Almost every program you write in
the future will have data.

Right after this you have

.section .text

which starts the text section. The text section of a program is where the program instructions live.

The next instruction is

.globl _start

This instructs the assembler thatart  is important to rememberstart  is asymbo] which

means that it is going to be replaced by something else either during assembly or linking.
Symbols are generally used to mark locations of programs or data, so you can refer to them by
name instead of by their location number. Imagine if you had to refer to every memory location

by it's address. First of all, it would be very confusing because you would have to memorize or
look up the numeric memory address of every piece of code or data. In addition, every time you
had to insert a piece of data or code you would have to change all the addresses in your program!
Symbols are used so that the assembler and linker can take care of keeping track of addresses,
and you can concentrate on writing your program.

.globl  means that the assembler shouldn’t discard this symbol after assembly, because the
linker will need it._start is a special symbol that always needs to be marked wlitbl

because it marks the location of the start of the proghiaithout marking this location in this

way, when the computer loads your program it won’t know where to begin running your program

The next line

_start:

defineghe value of the start  label. Alabelis a symbol followed by a colon. Labels define a
symbol’s value. When the assembler is assembling the program, it has to assign each data value
and instruction an address. Labels tell the assembler to make the symbol’s value be wherever the
next instruction or data element will be. This way, if the actual physical location of the data or
instruction changes, you don’t have to rewrite any references to it - the symbol automatically gets
the new value.

Now we get into actual computer instructions. The first such instruction is this:
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movl $1, %eax
When the program runs, this instruction transfers the numli&io the%eax register. In
assembly language, many instructions hagerandsmovl has two operands - theourceand
thedestination In this case, the source is the literal number 1, and the destination%ssthe
register. Operands can be numbers, memory location references, or registers. Different

instructions allow different types of operands. $¢@pendix Bfor more information on which
instructions take which kinds of operands.

On most instructions which have two operands, the first one is the source operand and the second
one is the destination. Note that in these cases, the source operand is not modified at all. Other
instructions of this type are, for exampéald! , subl , andimull . These add/subtract/multiply

the source operand from/to/by the destination operand and and save the result in the destination
operand. Other instructions may have an operand hardcodieiin. , for example, requires that

the dividend be ifoeax, and%edx be zero, and the quotient is then transferrethéax and the
remainder t®edx. However, the divisor can be any register or memory location.

On x86 processors, there are several general-purpose retfiateos which can be used with
movl ):

« Ooeax
» %ebx
* %ecx
» Y%edx
» %edi
> %esi

In addition to these general-purpose registers, there are also several special-purpose registers,
including:

» %ebp
+ %esp
+ %eip

- %eflags

4. Note that on x86 processors, even the general-purpose registers have some special purposes, or used to
before it went 32-bit. However, these are general-purpose registers for most instructions. Each of them has at
least one instruction where it is used in a special way. However, for most of them, those instructions aren’t
covered in this book.
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We’'ll discuss these later, just be aware that they &3&ime of these registers, likgeip and

%eflags can only be accessed through special instructions. The others can be accessed using the
same instructions as general-purpose registers, but they have special meanings, special uses, or
are simply faster when used in a specific way.

So, themovl instruction moves the numberinto %eax. The dollar-sign in front of the one
indicates that we want to use immediate mode addressing (refer btk $@ction calle@®ata
Accessing Methoda Chapter 2. Without the dollar-sign it would do direct addressing, loading
whatever number is at addressWe want the actual numberloaded in, so we have to use
immediate mode.

The reason we are moving the number 1 #teax is because we are preparing to call the Linux
Kernel. The numbet is the number of thexit system call We will discuss system calls in

more depth soon, but basically they are requests for the operating system’s help. Normal
programs can’t do everything. Many operations such as calling other programs, dealing with files,
and exiting have to be handled by the operating system through system calls. When you make a
system call, which we will do shortly, the system call number has to be loadethazto(for a

complete listing of system calls and their numbers,Aggendix Q. Depending on the system

call, other registers may have to have values in them as well. Note that system calls is not the only
use or even the main use of registers. It is just the one we are dealing with in this first program.
Later programs will use registers for regular computation.

The operating system, however, usually needs more information than just which call to make. For
example, when dealing with files, the operating system needs to know which file you are dealing
with, what data you want to write, and other details. The extra details, qadieonetersare

stored in other registers. In the case of¢he system call, the operating system requires a

status code be loadeddpebx. This value is then returned to the system. This is the value you
retrieved when you typeecho $? . So, we loadoebx with 0 by typing the following:

movl $0, %ebx

Now, loading registers with these numbers doesn’t do anything itself. Registers are used for all
sorts of things besides system calls. They are where all program logic such as addition,
subtraction, and comparisons take place. Linux simply requires that certain registers be loaded
with certain parameter values before making a system%ahx is always required to be loaded
with the system call number. For the other registers, however, each system call has different
requirements. In thexit system call%ebx is required to be loaded with the exit status. We will

5. You may be wonderingwhy do all of these registers begin with the let¢& The reason is that early
generations of x86 processors were 16 bits rather than 32 bits. Therefore, the registers were only half the
length they are now. In later generations of x86 processors, the size of the registers doubled. They kept the
old names to refer to the first half of the register, and added anrefer to the extended versions of the
register. Usually you will only use the extended versions. Newer models also offer a 64-bit mode, which
doubles the size of these registers yet again and usepeafix to indicate the larger registers (i%rax is

the 64-bit version ofoeax). However, these processors are not widely used, and are not covered in this book.
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discuss different system calls as they are needed. For a list of common system calls and what is
required to be in each register, s&gpendix C

The next instruction is the "magic" one. It looks like this:
int $0x80

Theint stands fointerrupt The0x80 is the interrupt number to u$eAn interruptinterrupts

the normal program flow, and transfers control from our program to Linux so that it will do a
system call. You can think of it as like signaling Batman(or Larry-Boif you prefer). You need
something done, you send the signal, and then he comes to the rescue. You don’t care how he
does his work - it's more or less magic - and when he’s done you're back in control. In this case,
all we're doing is asking Linux to terminate the program, in which case we won'’t be back in
control. If we didn’t signal the interrupt, then no system call would have been performed.

Quick System Call Review: To recap - Operating System features are accessed through
system calls. These are invoked by setting up the registers in a special way and issuing the
instruction int $0x80 . Linux knows which system call we want to access by what we
stored in the %eax register. Each system call has other requirements as to what needs to be
stored in the other registers. System call number 1 is the exit system call, which requires
the status code to be placed in %ebx.

Now that you've assembled, linked, run, and examined the program, you should make some basic
edits. Do things like change the number that is loaded%sdbx, and watch it come out at the end

with echo $? . Don'’t forget to assemble and link it again before running it. Add some comments.
Don’t worry, the worse thing that would happen is that the program won't assemble or link, or

will freeze your screen. That'’s just part of learning!

Planning the Program

In our next program we will try to find the maximum of a list of numbers. Computers are very
detail-oriented, so in order to write the program we will have to have planned out a number of
details. These details include:

6. You may be wondering why it'®x80 instead of jusB0. The reason is that the number is written in
hexadecimal. In hexadecimal, a single digit can hold 16 values instead of the normal 10. This is done by
utilizing the lettersa throughf in addition to the regular digits represents 10 represents 11, and so on.

0x10 represents the number 16, and so on. This will be discussed more in depth later, but just be aware that
numbers starting withix are in hexadecimal. Tacking on arat the end is also sometimes used instead, but

we won't do that in this book. For more information about this, Gaapter 10

7. Actually, the interrupt transfers control to whoever set upné@rrupt handlerfor the interrupt number.

In the case of Linux, all of them are set to be handled by the Linux kernel.

8. If you don’t watch Veggie Tales, you should. Start with Dave and the Giant Pickle.
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« Where will the original list of numbers be stored?

« What procedure will we need to follow to find the maximum number?

« How much storage do we need to carry out that procedure?

« Will all of the storage fit into registers, or do we need to use some memory as well?

You might not think that something as simple as finding the maximum number from a list would
take much planning. You can usually tell people to find the maximum number, and they can do so
with little trouble. However, our minds are used to putting together complex tasks automatically.
Computers need to be instructed through the process. In addition, we can usually hold any
number of things in our mind without much trouble. We usually don’t even realize we are doing

it. For example, if you scan a list of numbers for the maximum, you will probably keep in mind
both the highest number you've seen so far, and where you are in the list. While your mind does
this automatically, with computers you have to explicitly set up storage for holding the current
position on the list and the current maximum number. You also have other problems such as how
to know when to stop. When reading a piece of paper, you can stop when you run out of numbers.
However, the computer only contains numbers, so it has no idea when it has reached the last of
your numbers.

In computers, you have to plan every step of the way. So, let’s do a little planning. First of all, just
for reference, let's name the address where the list of numbers staemaisems . Let’s say

that the last number in the list will be a zero, so we know where to stop. We also need a value to
hold the current position in the list, a value to hold the current list element being examined, and
the current highest value on the list. Let’s assign each of these a register:

« %edi will hold the current position in the list.
+ %ebxwill hold the current highest value in the list.
+ %eaxwill hold the current element being examined.

When we begin the program and look at the first item in the list, since we haven’t seen any other
items, that item will automatically be the current largest element in the list. Also, we will set the
current position in the list to be zero - the first element. From then, we will follow the following
steps:

1. Check the current list elemertbéax) to see if it's zero (the terminating element).
2.1fitis zero, exit.
3. Increase the current positio?édi).

4. Load the next value in the list into the current value registesalx). What addressing mode
might we use here? Why?

20



Chapter 3. Your First Programs
5. Compare the current valueésgax) with the current highest valuéugebx).

6. If the current value is greater than the current highest value, replace the current highest value
with the current value.

7. Repeat.

That is the procedure. Many times in that procedure | made use of the word "if". These places are
where decisions are to be made. You see, the computer doesn't follow the exact same sequence of
instructions every time. Depending on which "if"s are correct, the computer may follow a

different set of instructions. The second time through, it might not have the highest value. In that
case, it will skip step 6, but come back to step 7. In every case except the last one, it will skip step
2. In more complicated programs, the skipping around increases dramatically.

These "if"s are a class of instructions calfemv controlinstructions, because they tell the

compute which steps to follow and which paths to take. In the previous program, we did not have
any flow control instructions, as there was only one possible path to take - exit. This program is
much more dynamic in that it is directed by data. Depending on what data it receives, it will
follow different instruction paths.

In this program, this will be accomplished by two different instructions, the conditional jump and
the unconditional jump. The conditional jump changes paths based on the results of a previous
comparison or calculation. The unconditional jump just goes directly to a different path no matter
what. The unconditional jump may seem useless, but it is very necessary since all of the
instructions will be laid out on a line. If a path needs to converge back to the main path, it will
have to do this by an unconditional jump. We will see more of both of these jumps in the next
section.

Another use of flow control is in implementing loops. A loop is a piece of program code that is
meant to be repeated. In our example, the first part of the program (setting the current position to
0 and loading the current highest value with the current value) was only done once, so it wasn't a
loop. However, the next part is repeated over and over again for every number in the list. It is only
left when we have come to the last element, indicated by a zero. This is cétled laecause it

occurs over and over again. It is implemented by doing unconditional jumps to the beginning of
the loop at the end of the loop, which causes it to start over. However, you have to always
remember to have a conditional jump to exit the loop somewhere, or the loop will continue
forever! This condition is called anfinite loop If we accidentally left out step 1, 2, or 3, the

loop (and our program) would never end.

In the next section, we will implement this program that we have planned. Program planning
sounds complicated - and it is, to some degree. When you first start programming, it’s often hard
to convert our normal thought process into a procedure that the computer can understand. We
often forget the number of "temporary storage locations" that our minds are using to process
problems. As you read and write programs, however, this will eventually become very natural to
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you. Just have patience.

Finding a Maximum Value

Enter the following program asaximum.s :
#PURPOSE: This program finds the maximum number of a

# set of data items.
#

#VARIABLES: The registers have the following uses:

%edi - Holds the index of the data item being examined
%ebx - Largest data item found

%eax - Current data item

The following memory locations are used:

data_items - contains the item data. A O is used
to terminate the data

HHHHHHHHFHH

.section .data

data_items: #These are the data items
Jlong 3,67,34,222,45,75,54,34,44,33,22,11,66,0

.section .text

.globl _start
_start:

movl $0, %edi # move 0 into the index register
movl data_items(,%edi,4), %eax # load the first byte of data

movl %eax, %ebx # since this is the first item, %eax is

# the biggest

start_loop: # start loop

cmpl $0, %eax # check to see if we've hit the end
je loop_exit

incl %edi # load next value

movl data_items(,%edi,4), %eax

cmpl %ebx, %eax # compare values

jle start_loop # jump to loop beginning if the new
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# one isn't bigger

movl %eax, %ebx # move the value as the largest
jmp start_loop # jump to loop beginning
loop_exit:

# %ebx is the status code for the exit system call

# and it already has the maximum number
movl $1, %eax #1 is the exit() syscall
int  $0x80

Now, assemble and link it with these commands:

as maximum.s -0 maximum.o
[d maximum.o -0 maximum

Now run it, and check it's status.

Jmaximum
echo $?

You'll notice it returns the valu@22. Let’s take a look at the program and what it does. If you

look in the comments, you'll see that the program finds the maximum of a set of numbers (aren’t
comments wonderful!). You may also notice that in this program we actually have something in
the data section. These lines are the data section:

data_items: #These are the data items
Jlong 3,67,34,222,45,75,54,34,44,33,22,11,66,0

Lets look at thisdata_items is a label that refers to the location that follows it. Then, there is a
directive that starts wittlong . That causes the assembler to reserve memory for the list of
numbers that follow itdata_items refers to the location of the first one. Becada&_items

is a label, any time in our program where we need to refer to this address we can use the
data_items symbol, and the assembler will substitute it with the address where the numbers
start during assembly. For example, the instructian! data_items, %eax  would move the
value 3 into%eax. There are several different types of memory locations other.tbvagn that

can be reserved. The main ones are as follows:

.byte

Bytes take up one storage location for each number. They are limited to numbers between 0O
and 255.
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int

Ints (which differ from thent instruction) take up two storage locations for each number.
These are limitted to numbers between 0 and 65535.

Jong

Longs take up four storage locations. This is the same amount of space the registers use,
which is why they are used in this program. They can hold numbers between 0 and
4294967295.

.ascii

The.ascii  directive is to enter in characters into memory. Characters each take up one
storage location (they are converted into bytes internally). So, if you gave the directive

.ascii "Hello there\0" , the assembler would reserve 12 storage locations (bytes). The
first byte contains the numeric code tgrthe second byte contains the numeric codesfor

and so forth. The last character is representedhynd it is the terminating character (it

will never display, it just tells other parts of the program that that’s the end of the

characters). Letters and numbers that start with a backslash represent characters that are not
typeable on the keyboard or easily viewable on the screen. For exampigfers to the

"newline" character which causes the computer to start output on the next litie areders

to the "tab" character. All of the letters in aascii  directive should be in quotes.

In our example, the assembler reserveddst s, one right after another. Since each long takes
up 4 bytes, that means that the whole list takes up 56 bytes. These are the numbers we will be
searching through to find the maximudata_items is used by the assembler to refer to the
address of the first of these values.

Take note that the last data item in the list is a zero. | decided to use a zero to tell my program that
it has hit the end of the list. | could have done this other ways. | could have had the size of the list
hard-coded into the program. Also, | could have put the length of the list as the first item, or in a
separate location. | also could have made a symbol which marked the last location of the list
items. No matter how | do it, | must have some method of determining the end of the list. The
computer knows nothing - it can only do what its told. It's not going to stop processing unless |
give it some sort of signal. Otherwise it would continue processing past the end of the list into the
data that follows it, and even to locations where we haven't put any data.

Notice that we don’t have globl  declaration fodata_items . This is because we only refer
to these locations within the program. No other file or program needs to know where they are
located. This is in contrast to thatart  symbol, which Linux needs to know where it is so that
it knows where to begin the program’s execution. It's not an error to wgiibéel

9. Note that no numbers in assembly language (or any other computer language I've seen) have commas
embedded in them. So, always write numbers k835, and never likes5,535 .
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data_items , it's just not necessary. Anyway, play around with this line and add your own
numbers. Even though they ateng , the program will produce strange results if any number is
greater than 255, because that’s the largest allowed exit status. Also notice that if you move the 0
to earlier in the list, the rest get ignord@lemember that any time you change the source file, you
have to re-assemble and re-link your program. Do this now and see the results

All right, we've played with the data a little bit. Now let’s look at the code. In the comments you

will notice that we've marked someariablesthat we plan to use. A variable is a dedicated

storage location used for a specific purpose, usually given a distinct name by the programmer. We
talked about these in the previous section, but didn’t give them a name. In this program, we have
several variables:

« avariable for the current maximum number found
- avariable for which number of the list we are currently examining, called the index
 avariable holding the current number being examined

In this case,we have few enough variables that we can hold them all in registers. In larger
programs, you have to put them in memory, and then move them to registers when you are ready
to use them. We will discuss how to do that later. When people start out programming, they
usually underestimate the number of variables they will need. People are not used to having to
think through every detail of a process, and therefore leave out needed variables in their first
programming attempts.

In this program, we are usirigebx as the location of the largest item we've fouptkdi is used

as theindexto the current data item we’re looking at. Now, let’s talk about what an index is.
When we read the information frodata_items , we will start with the first one (data item

number 0), then go to the second one (data item number 1), then the third (data item number 2),
and so on. The data item number is théexof data_items . You’'ll notice that the first

instruction we give to the computer is:

movl $0, %edi

Since we are usingpedi as our index, and we want to start looking at the first item, we load
%edi with 0. Now, the next instruction is tricky, but crucial to what we're doing. It says:

movl data_items(,%edi,4), %eax

Now to understand this line, you need to keep several things in mind:

- data_items is the location number of the start of our number list.

- Each number is stored across 4 storage locations (because we declared.lbnging
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+ %edi is holding O at this point

So, basically what this line does is say, "start at the beginning of data_items, and take the first
item number (becauggedi is 0), and remember that each number takes up four storage
locations." Then it stores that numberieax. This is how you write indexed addressing mode
instructions in assembly language. The instruction in a general form is this:

movl BEGINNINGADDRESS(,%INDEXREGISTER,WORDSIZE)

In our casealata_items ~ was our beginning addreSsedi was our index register, and 4 was our
word size. This topic is discussed furthettire Section calledddressing Modes

If you look at the numbers idata_items , you will see that the number 3 is nowdteax. If

%edi was set to 1, the number 67 would bedbeax, and if it was set to 2, the number 34 would

be in%eax, and so forth. Very strange things would happen if we used a number other than 4 as
the size of our storage locatioHsThe way you write this is very awkward, but if you know what
each piece does, it's not too difficult. For more information about thistlee8ection called
Addressing Modes

Let’s look at the next line:

movl %eax, %ebx

We have the first item to look at storeddeax. Since it is the first item, we know it’'s the biggest
one we've looked at. We store it tebx, since that’'s where we are keeping the largest number
found. Also, even thoughmovl stands fomove it actually copies the value, S6eax and%ebx
both contain the starting valdeé.

Now we move into doop. A loop is a segment of your program that might run more than once.
We have marked the starting location of the loop in the symataoi loop . The reason we are
doing a loop is because we don’t know how many data items we have to process, but the
procedure will be the same no matter how many there are. We don’t want to have to rewrite our
program for every list length possible. In fact, we don’t even want to have to write out code for a
comparison for every list item. Therefore, we have a single section of code (a loop) that we
execute over and over again for every elementfaita_items

In the previous section, we outlined what this loop needed to do. Let’s review:

10. The instruction doesn't really use 4 for the size of the storage locations, although looking at it that way
works for our purposes now. It's actually what's calleshaltiplier. basically, the way it works is that you start

at the location specified byata_items , then you addrwedi*4 storage locations, and retrieve the number
there. Usually, you use the size of the numbers as your multiplier, but in some circumstances you’ll want to
do other things.

11. Also, thel in movl stands fomove longsince we are moving a value that takes up four storage locations.
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« Check to see if the current value being looked at is zero. If so, that means we are at the end of
our data and should exit the loop.

« We have to load the next value of our list.

« We have to see if the next value is bigger than our current biggest value.

. Ifitis, we have to copy it to the location we are holding the largest value in.
« Now we need to go back to the beginning of the loop.

Okay, so now lets go to the code. We have the beginning of the loop markesitavithoop
That is so we know where to go back to at the end of our loop. Then we have these instructions:

cmpl $0, %eax
je end_loop

Thecmpl instruction compares the two values. Here, we are comparing the number O to the
number stored ifoeax This compare instruction also affects a register not mentioned here, the
%eflags register. This is also known as the status register, and has many uses which we will
discuss later. Just be aware that the result of the comparison is stored in the status register. The
next line is a flow control instruction which saysjtonpto theend_loop location if the values

that were just compared are equal (that's whattlogéje means). It uses the status register to

hold the value of the last comparison. We ugedbut there are many jump statements that you
can use:

je
Jump if the values were equal
i9
Jump if the second value was greater than the first Value
jge
Jump if the second value was greater than or equal to the first value
jl
Jump if the second value was less than the first value
jle

Jump if the second value was less than or equal to the first value

12. notice that the comparison is to see if fecondvalue is greater than the first. | would have thought it
the other way around. You will find a lot of things like this when learning programming. It occurs because
different things make sense to different people. Anyway, you'll just have to memorize such things and go on.
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jmp
Jump no matter what. This does not need to be preceeded by a comparison.

The complete list is documentedAppendix B In this case, we are jumping%eax holds the
value of zero. If so, we are done and we gdotap_exit .=

If the last loaded element was not zero, we go on to the next instructions:

incl %edi
movl data_items(,%edi,4), %eax

If you remember from our previous discussi@tedi contains the index to our list of values in
data_items .incl increments the value @bedi by one. Then thenovl is just like the one we
did beforehand. However, since we already incremettted! , %eax is getting the next value
from the list. Now%seax has the next value to be tested. So, let’s test it!

cmpl %ebx, %eax
jle start_loop

Here we compare our current value, storeéoisax to our biggest value so far, storeddsebx. If
the current value is less or equal to our biggest value so far, we don’t care about it, so we just
jump back to the beginning of the loop. Otherwise, we need to record that value as the largest one:

movl %eax, %ebx
jmp start_loop

which moves the current value inteebx, which we are using to store the current largest value,
and starts the loop over again.

Okay, so the loop executes until it reaches a 0, when it jum®poexit . This part of the

program calls the Linux kernel to exit. If you remember from the last program, when you call the
operating system (remember it’s like signaling Batman), you store the system call number in
%eax (1 for theexit call), and store the other values in the other registers. The exit call requires
that we put our exit status #ebx We already have the exit status there since we are Gséhgy

as our largest number, so all we have to do is l@&dx with the number one and call the kernel

to exit. Like this:

movl $1, %eax
int  0x80

13. The names of these symbols can be anything you want them to be, as long as they only contain letters
and the underscore charactgr(The only one that is forced istart , and possibly others that you declare

with .globl . However, if its a symbol you define and only you use, feel free to call it anything you want that

is adequately descriptive (remember that others will have to modify your code later, and will have to figure
out what your symbols mean).

28



Chapter 3. Your First Programs

Okay, that was a lot of work and explanation, especially for such a small program. But hey,
you're learning a lot! Now, read through the whole program again, paying special attention to the
comments. Make sure that you understand what is going on at each line. If you don’t understand
a line, go back through this section and figure out what the line means.

You might also grab a piece of paper, and go through the program step-by-step, recording every
change to every register, so you can see more clearly what is going on.

Addressing Modes

In the Section calle®ata Accessing Methods Chapter 2ve learned the different types of
addressing modes available for use in assembly language. This section will deal with how those
addressing modes are represented in assembly language instructions.

The general form of memory address references is this:

ADDRESS_OR_OFFSET(%BASE_OR_OFFSET,%INDEX,MULTIPLIER)

All of the fields are optional. To calculate the address, simply perform the following calculation:

FINAL ADDRESS = ADDRESS_OR_OFFSET + %BASE_OR_OFFSET + MULTIPLIER * %INDEX

ADDRESS_OR_OFFSENAMULTIPLIER must both be constants, while the other two must be
registers. If any of the pieces is left out, it is just substituted with zero in the equation.

All of the addressing modes mentionedine Section calle®ata Accessing Methods Chapter
2 except immediate-mode can be represented in this fashion.

direct addressing mode
This is done by only using theDDRESS_OR_OFFSH¥ortion. Example:
movl ADDRESS, %eax
This loads»eax with the value at memory addreABDRESS

indexed addressing mode

This is done by using theaDDRESS_OR_OFFSHEINd the%sINDEXportion. You can use any
general-purpose register as the index register. You can also have a constant multiplier of 1, 2,
or 4 for the index register, to make it easier to index by bytes, double-bytes, and words. For
example, let's say that we had a string of bytesteisg_start and wanted to access the

third one (an index of 2 since we start counting the index at zero)¥aed held the value

2. If you wanted to load it int@eax you could do the following:

movl string_start(,%ecx,1), %eax
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This starts astring_start ,and addq * %ecx to that address, and loads the value into
%eax.

indirect addressing mode

Indirect addressing mode loads a value from the address indicated by a register. For
example, if%oeax held an address, we could move the value at that addrésstioby doing
the following:

movl (%eax), %ebx

base pointer addressing mode

Base-pointer addressing is similar to indirect addressing, except that it adds a constant value
to the address in the register. For example, if you have a record where the age value is 4
bytes into the record, and you have the address of the recétddr you can retrieve the
age into%ebx by issuing the following instruction:

movl  4(%eax), %ebx

immediate mode

Immediate mode is very simple. It does not follow the general form we have been using.
Immediate mode is used to load direct values into registers or memory locations. For
example, if you wanted to load the number 12 itit@ax, you would simply do the

following:

movl $12, %eax
Notice that to indicate immediate mode, we used a dollar sign in front of the number. If we

did not, it would be direct addressing mode, in which case the value located at memory
location 12 would be loaded inteax rather than the number 12 itself.

register addressing mode

Register mode simply moves data in or out of a register. In all of our examples, register
addressing mode was used for the other operand.

These addressing modes are very important, as every memory access will use one of these. Every
mode except immediate mode can be used as either the source or destination operand. Immediate
mode can only be a source operand.

In addition to these modes, there are also different instructions for different sizes of values to
move. For example, we have been usimgy| to move data a word at a time. in many cases, you
will only want to move data a byte at a time. This is accomplished by the instruatigb.
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However, since the registers we have discussed are word-sized and not byte-sized, you cannot use
the full register. Instead, you have to use a portion of the register.

Take for instance@oeax. If you only wanted to work with two bytes at a time, you could just use
%ax. %axis the least-significant half (i.e. - the last part of the number) oftbex register, and is
useful when dealing with two-byte quantitiésaxis further divided up int@al and%ah %eal is

the least-significant byte ébax, and%ahis the most significant byté.Loading a value into

%eax Will wipe out whatever was ifoal and%ah(and als®bax, since%axis made up of them).
Similarly, loading a value into eith&bal or %ahwill corrupt any value that was formerly in

%eax. Basically, it's wise to only use a register for either a byte or a word, but never both at the
same time.

%eax

“

%ah | Yoal

W

%0ax

Layout of thevoeax register

For a more comprehensive list of instructions, Appendix B

Review

Know the Concepts

« What does if mean if a line in the program starts with the '#’ character?

« What is the difference between an assembly language file and an object code file?

14. When we talk about the most or leaggnificantbyte, it may be a little confusing. Let’s take the number
5432. In that number, 54 is the most significant half of that number and 32 is the least significant half. You
can't quite divide it like that for registers, since they operate on base 2 rather than base 10 numbers, but that’s
the basic idea. For more information on this topic, €&apter 10
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What does the linker do?

How do you check the result status code of the last program you ran?
What is the difference betweeovl $1, %eax andmovl 1, %eax ?
Which register holds the system call number?

What are indexes used for?

Why do indexes usually start at 0?

If I issued the commanohovl data_items(,%edi,4), %eax and data_items was address
3634 andvedi held the value 13, what address would you be using to move/etx?

List the general-purpose registers.

What is the difference betweemvl andmovb?

What is flow control?

What does a conditional jump do?

What things do you have to plan for when writing a program?

Go through every instruction and list what addressing mode is being used for each operand.

Use the Concepts

Modify the first program to return the value 3.
Modify the maximum program to find the minimum instead.
Modify the maximum program to use the number 255 to end the list rather than the number O

Modify the maximum program to use an ending address rather than the number 0 to know when
to stop.

Modify the maximum program to use a length count rather than the number 0 to know when to
stop.

What would the instructiomovl _start, %eax  do? Be specific, based on your knowledge
of both addressing modes and the meaningstdrt . How would this differ from the
instructionmovl $_start, %eax ?
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Going Further

« Modify the first program to leave off thet instruction line. Assemble, link, and execute the
new program. What error message do you get. Why do you think this might be?

« So far, we have discussed three approaches to finding the end of the list - using a special
number, using the ending address, and using the length count. Which approach do you think is
best? Why? Which approach would you use if you knew that the list was sorted? Why?
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Dealing with Complexity

In Chapter 3the programs we wrote only consisted of one section of code. However, if we wrote

real programs like that, it would be impossible to maintain them. It would be really difficult to get

multiple people working on the project, as any change in one part might adversely affect another
part that another developer is working on.

To assist programmers in working together in groups, it is necessary to break programs apart into
separate pieces, which communicate with each other through well-defined interfaces. This way,
each piece can be developed and tested independently of the others, making it easier for multiple
programmers to work on the project.

Programmers usieinctionsto break their programs into pieces which can be independently
developed and tested. Functions are units of code that do a defined piece of work on specified
types of data. For example, in a word processor program, | may have a function called
handle_typed_character which is activated whenever a user types in a key. The data the
function uses would probably be the keypress itself and the document the user currently has open.
The function would then modify the document according to the keypress it was told about.

The data items a function is given to process are callegarametersin the word processing
example, the key which was pressed and the document would be considered parameters to the
handle_typed_characters function. The parameter list and the processing expectations of a
function (what it is expected to do with the parameters) are called the function’s interface. Much
care goes into designing function interfaces, because if they are called from many places within a
project, it is difficult to change them if necessary.

A typical program is composed of hundreds or thousands of functions, each with a small,
well-defined task to perform. However, ultimately there are things that you cannot write functions
for which must be provided by the system. Those are caltaditive functiongor just

primitiveg - they are the basics which everything else is built off of. For example, imagine a
program that draws a graphical user interface. There has to be a function to create the menus.
That function probably calls other functions to write text, to write icons, to paint the background,
calculate where the mouse pointer is, etc. However, ultimately, they will reach a set of primitives
provided by the operating system to do basic line or point drawing. Programming can either be
viewed as breaking a large program down into smaller pieces until you get to the primitive
functions, or incrementally building functions on top of primitives until you get the large picture

in focus. In assembly language, the primitives are usually the same thing as the system calls, even
though system calls aren’t true functions as we will talk about in this chapter.
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How Functions Work

Functions are composed of several different pieces:

function name

A function’s name is a symbol that represents the address where the function’s code starts.
In assembly language, the symbol is defined by typing the the function’s name as a label
before the function’s code. This is just like labels you have used for jumping.

function parameters

A function’s parameters are the data items that are explicitly given to the function for
processing. For example, in mathematics, there is a sine function. If you were to ask a
computer to find the sine of 2, sine would be the function’s name, and 2 would be the
parameter. Some functions have many parameters, others havé none.

local variables

Local variables are data storage that a function uses while processing that is thrown away
when it returns. It's kind of like a scratch pad of paper. Functions get a new piece of paper
every time they are activated, and they have to throw it away when they are finished
processing. Local variables of a function are not accessible to any other function within a
program.

static variables

Static variables are data storage that a function uses while processing that is not thrown
away afterwards, but is reused for every time the function’s code is activated. This data is

not accessible to any other part of the program. Static variables are generally not used unless
absolutely necessary, as they can cause problems later on.

global variables

Global variables are data storage that a function uses for processing which are managed
outside the function. For example, a simple text editor may put the entire contents of the file
it is working on in a global variable so it doesn’t have to be passed to every function that
operates on it.Configuration values are also often stored in global variables.

1. Function parameters can also be used to hold pointers to data that the function wants to send back to the
program.

2. Thisis generally considered bad practice. Imagine if a program is written this way, and in the next version
they decided to allow a single instance of the program edit multiple files. Each function would then have to
be modified so that the file that was being manipulated would be passed as a parameter. If you had simply
passed it as a parameter to begin with, most of your functions could have survived your upgrade unchanged.
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return address

The return address is an "invisible" parameter in that it isn’t directly used during the
function. The return address is a parameter which tells the function where to resume
executing after the function is completed. This is needed because functions can be called to
do processing from many different parts of your program, and the function needs to be able
to get back to wherever it was called from. In most programming languages, this parameter
is passed automatically when the function is called. In assembly languagalithe

instruction handles passing the return address for youreandhandles using that address to
return back to where you called the function from.

return value

The return value is the main method of transferring data back to the main program. Most
programming languages only allow a single return value for a function.

These pieces are present in most programming languages. How you specify each piece is
different in each one, however.

The way that the variables are stored and the parameters and return values are transferred by the
computer varies from language to language as well. This variance is known as a language’s
calling conventionbecause it describes how functions expect to get and receive data when they
are called

Assembly language can use any calling convention it wants to. You can even make one up
yourself. However, if you want to interoperate with functions written in other languages, you

have to obey their calling conventions. We will use the calling convention of the C programming
language for our examples because it is the most widely used, and because it is the standard for
Linux platforms.

Assembly-Language Functions using the C Calling Convention

You cannot write assembly-language functions without understanding how the comptaek’s
works. Each computer program that runs uses a region of memory called the stack to enable
functions to work properly. Think of a stack as a pile of papers on your desk which can be added
to indefinitely. You generally keep the things that you are working on toward the top, and you
take things off as you are finished working with them.

Your computer has a stack, too. The computer’s stack lives at the very top addresses of memory.
You can push values onto the top of the stack through an instruction galiet , which pushes

3. A conventionis a way of doing things that is standardized, but not forcibly so. For example, it is a
convention for people to shake hands when they meet. If | refuse to shake hands with you, you may think |
don't like you. Following conventions is important because it makes it easier for others to understand what
you are doing, and makes it easier for programs written by multiple independent authors to work together.
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either a register or memory value onto the top of the stack. Well, we say it’s the top, but the "top"
of the stack is actually the bottom of the stack’s memory. Although this is confusing, the reason
for it is that when we think of a stack of anything - dishes, papers, etc. - we think of adding and
removing to the top of it. However, in memory the stack starts at the top of memory and grows
downward due to architectural considerations. Therefore, when we refer to the "top of the stack”
remember it’s at the bottom of the stack’s memory. You can also pop values off the top using an
instruction callegopl . This removes the top value from the stack and places it into a register or
memory location of your choosing..

When we push a value onto the stack, the top of the stack moves to accomodate the additional
value. We can actually continually push values onto the stack and it will keep growing further and
further down in memory until we hit our code or data. So how do we know where the current
"top" of the stack is? The stack regist&esp, always contains a pointer to the current top of the
stack, wherever it is.

Every time we push something onto the stack witkhl , %esp gets subtracted by 4 so that it
points to the new top of the stack (remember, each word is four bytes long, and the stack grows
downward). If we want to remove something from the stack, we simply ugeofiie instruction,
which adds 4 t@dsesp and puts the previous top value in whatever register you speqifiehl

andpopl each take one operand - the register to push onto the stapkdiar , or receive the

data that is popped off the stack faspl .

If we simply want to access the value on the top of the stack without removing it, we can simply
use thevvesp register in indirect addressing mode. For example, the following code moves
whatever is at the top of the stack irti@ax:

movl (%esp), Yeax
If we were to just do this:
movl %esp, %eax

then%eax would just hold the pointer to the top of the stack rather than the value at the top.
Putting%esp in parenthesis causes the computer to go to indirect addressing mode, and therefore
we get the value pointed to Bgesp. If we want to access the value right below the top of the

stack, we can simply issue this instruction:

movl 4(%esp), %eax

This instruction uses the base pointer addressing modehge&ection calle®ata Accessing
Methodsin Chapter 2 which simply adds 4 t@sesp before looking up the value being pointed to.

In the C language calling convention, the stack is the key element for implementing a function’s
local variables, parameters, and return address.
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Before executing a function, a program pushes all of the parameters for the function onto the
stack in the reverse order that they are documented. Then the program isaliesmstruction
indicating which function it wishes to start. Thell instruction does two things. First it pushes
the address of the next instruction, which is the return address, onto the stack. Then it modifies
the instruction pointergeip ) to point to the start of the function. So, at the time the function
starts, the stack looks like this (the "top" of the stack is at the bottom on this example):

Parameter #N

Parameter 2
Parameter 1
Return Address <--- (%esp)

Each of the parameters of the function have been pushed onto the stack, and finally the return
address is there. Now the function itself has some work to do.

The first thing it does is save the current base pointer regigtey, by doingpushl %ebp . The

base pointer is a special register used for accessing function parameters and local variables. Next,
it copies the stack pointer Baebp by doingmovl %esp, %ebp . This allows you to be able to

access the function parameters as fixed indexes from the base pointer. You may think that you can
use the stack pointer for this. However, during your program you may do other things with the
stack such as pushing arguments to other functions.

Copying the stack pointer into the base pointer at the beginning of a function allows you to
always know where your parameters are (and as we will see, local variables too), even while you
may be pushing things on and off the stailebp will always be where the stack pointer was at

the beginning of the function, so it is more or less a constant reference stattleframgthe

stack frame consists of all of the stack variables used within a function, including parameters,
local variables, and the return address).

At this point, the stack looks like this:

Parameter #N  <--- N*4+4(%ebp)

Parameter 2 <--- 12(%ebp)

Parameter 1 <--- 8(%ebp)

Return Address <--- 4(%ebp)

Old %ebp <--- (%esp) and (%ebp)

As you can see, each parameter can be accessed using base pointer addressing mode using the
%ebpregister.

Next, the function reserves space on the stack for any local variables it needs. This is done by
simply moving the stack pointer out of the way. Let’s say that we are going to need two words of
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memory to run a function. We can simply move the stack pointer down two words to reserve the
space. This is done like this:

subl $8, %esp

This subtracts 8 frorfesp (remember, a word is four bytes lontjJhis way, we can use the

stack for variable storage without worring about clobbering them with pushes that we may make
for function calls. Also, since it is allocated on the stack frame for this function call, the variable
will only be alive during this function. When we return, the stack frame will go away, and so will
these variables. That's why they are called local - they only exist while this function is being
called.

Now we have two words for local storage. Our stack now looks like this:

Parameter #N <--- N*4+4(%ebp)
Parameter 2 <--- 12(%ebp)
Parameter 1 <--- 8(%ebp)
Return Address <--- 4(%ebp)

Old %ebp <--- (%ebp)

Local Variable 1 <--- -4(%ebp)
Local Variable 2 <--- -8(%ebp) and (%esp)

So we can now access all of the data we need for this function by using base pointer

addressing using different offsets franebp. %ebpwas made specifically for this purpose, which

is why it is called the base pointer. You can use other registers in base pointer addressing mode,
but the x86 architecture makes using thebpregister a lot faster.

Global variables and static variables are accessed just like we have been accessing memory in
previous chapters. The only difference between the global and static variables is that static
variables are only used by one function, while global variables are used by many functions.
Assembly language treats them exactly the same, although most other languages distinguish
them.

When a function is done executing, it does three things:

1. It stores it’s return value ifbeax.

2. It resets the stack to what it was when it was called (it gets rid of the current stack frame and
puts the stack frame of the calling code back into effect).

4. Justareminder - the dollar sign in front of the eight indicates immediate mode addressing, meaning that
we load the number 8 intesp rather than the value at address 8.
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3. It returns control back to wherever it was called from. This is done usingethenstruction,
which pops whatever value is at the top of the stack, and sets the instruction paeiterto
that value.

So, before a function returns control to the code that called it, it must restore the previous stack
frame. Note also that without doing thigt wouldn’t work, because in our current stack frame,

the return address is not at the top of the stack. Therefore, before we return, we have to reset the
stack pointepoesp and base pointerebpto what they were when the function began.

Therefore to return from the function you have to do the following:

movl %ebp, %esp
popl %ebp
ret

At this point, you should consider all local variables to be disposedilod.reason is that after

you move the stack pointer back, future stack pushes will likely overwrite everything you put
there. Therefore, you should never save the address of a local variable past the life of the function
it was created in, or else it will be overwritten after the life of it's stack frame ends.

Control has now beenhanded back to the calling code, which can now examaréor the

return value. The calling code also needs to pop off all of the parameters it pushed onto the stack
in order to get the stack pointer back where it was (you can also simply add 4 * number of
paramters t@oesp using theaddl instruction, if you don’t need the values of the parameters
anymore).

Destruction of Registers

When you call a function, you should assume that everything currently in your
registers will be wiped out. The only register that is guaranteed to be left with the
value it started with is %ebp. %eax is guaranteed to be overwritten, and the others
likely are. If there are registers you want to save before calling a function, you need to
save them by pushing them on the stack before pushing the function’s paramters. You
can then pop them back off in reverse order after popping off the parameters. Even if
you know a function does not overwrite a register you should save it, because future
versions of that function may.

Other languages’ calling conventions may be different. For example, other calling
conventions may place the burden on the function to save any registers it uses. Be
sure to check to make sure the calling conventions of your languages are compatible
before trying to mix languages. Or in the case of assembly language, be sure you
know how to call the other language’s functions. them.

5. This is not always strictly needed unless you are saving registers on the stack before a function call. The
base pointer keeps the stack frame in a reasonably consistent state. However, it is still a good idea, and is
absolutely necessary if you are temporarily saving registers on the stack..
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Extended Specification: Details of the C language calling convention (also known as the
ABI, or Application Binary Interface) is available online. We have oversimplified and left out
several important pieces to make this simpler for new programmers. For full details, you
should check out the documents available at http://www.linuxbase.org/spec/refspecs/
Specifically, you should look for the System V Application Binary Interface - Intel386
Architecture Processor Supplement.

A Function Example

Let’s take a look at how a function call works in a real program. The function we are going to
write is thepower function. We will give the power function two parameters - the number and

the power we want to raise it to. For example, if we gave it the paramters 2 and 3, it would raise 2
to the power of 3, or 2*2*2, giving 8. In order to make this program simple, we will only allow
numbers 1 and greater.

The following is the code for the complete program. As usual, an explanation follows. Name the
file power.s .

#PURPOSE: Program to illustrate how functions work

# This program will compute the value of
# 2"3 + 572
#

#Everything in the main program is stored in registers,
#so the data section doesn’t have anything.
.section .data

.section .text

.globl _start
_start:

pushl $3 #push second argument
pushl $2 #push first argument

call power #call the function

addl  $8, %esp #move the stack pointer back
pushl %eax #save the first answer before

#calling the next function

pushl $2 #push second argument
pushl $5 #push first argument
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call power #call the function
addl  $8, %esp #move the stack pointer back
popl  %ebx #The second answer is already

#in %eax. We saved the
#first answer onto the stack,
#so0 now we can just pop it
#out into %ebx

addl %eax, %ebx #add them together
#the result is in %ebx

movl $1, %eax #exit (Yoebx is returned)
int  $0x80

#PURPOSE: This function is used to compute

# the value of a number raised to

# a power.

#

#INPUT: First argument - the base number

# Second argument - the power to

# raise it to

#

#OUTPUT: Will give the result as a return value
#

#NOTES: The power must be 1 or greater

#

#VARIABLES:

# %ebx - holds the base number

# %ecx - holds the power

#

# -4(%ebp) - holds the current result

#

# %eax is used for temporary storage
#

type power, @function

power:

pushl %ebp #save old base pointer
movl  %esp, %ebp #make stack pointer the base pointer
subl  $4, %esp #get room for our local storage

movl 8(%ebp), %ebx #put first argument in %eax
movl 12(%ebp), %ecx #put second argument in %ecx
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movl  %ebx, -4(%ebp) #store current result

power_loop_start:

cmpl  $1, %ecx #if the power is 1, we are done
je end_power

movl -4(%ebp), %eax #move the current result into %eax
imull %ebx, %eax #multiply the current result by

#the base number
movl %eax, -4(%ebp) #store the current result

decl %ecx #decrease the power
jmp power_loop_start #run for the next power

end_power:

movl -4(%ebp), %eax #return value goes in %eax
movl %ebp, %esp #restore the stack pointer
popl %ebp #restore the base pointer
ret

Type in the program, assemble it, and run it. Try calling power for different values, but remember
that the result has to be less than 256 when it is passed back to the operating system. Also try
subtracting the results of the two computations. Try adding a third call tpather function, and

add it’s result back in.

The main program code is pretty simple. You push the arguments onto the stack, call the
function, and then move the stack pointer back. The result is stodar Note that between
the two calls tgpower , we save the first value onto the stack. This is because the only register
that is guaranteed to be saveddsbp. Therefore we push the value onto the stack, and pop the
value back off after the second function call is complete.

Let's look at how the function itself is written. Notice that before the function, there is
documentation as to what the function does, what it's arguments are, and what it gives as a return
value. This is useful for programmers who use this function. This is the function’s interface. This
lets the programmer know what values are needed on the stack, and what withbexat the

end.

We then have the following line:
type power,@function

This tells the linker that the symbpbwer should be treated as a function. Since this program is
only in one file, it would work just the same with this left out. However, it is good practice.

After that, we define the value of tipewer label:
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power:
As mentioned previously, this defines the symbmler to be the address where the instructions
following the label begin. This is howall power works. It transfers control to this spot of the

program. The difference betweeall andjmp is thatcall also pushes the return address onto
the stack so that the function can return, whilejthe does not.

Next, we have our instructions to set up our function:

pushl %ebp
movl  %esp, %ebp
subl  $4, %esp

At this point, our stack looks like this:

Base Number <--- 12(%ebp)

Power <--- 8(%ebp)
Return Address <--- 4(%ebp)
Old %ebp <--- (%ebp)

Current result <--- -4(%ebp) and (%esp)

Although we could use a register for temporary storage, this program uses a local variable in
order to show how to set it up. Often times there just aren’t enough registers to store everything,
so you have to offload them into local variables. Other times, your function will need to call
another function and send it a pointer to some of your data. You can’t have a pointer to a register,
S0 you have to store it in a local variable in order to send a pointer to it.

Basically, what the program does is start with the base number, and store it both as the multiplier
(stored in%ebx) and the current value (stored in -4(%ebp)). It also has the power stoteetin

It then continually multiplies the current value by the multiplier, decreases the power, and leaves
the loop if the power (iMoecx) gets down to 1.

By now, you should be able to go through the program without help. The only things you should
need to know is thatull does integer multiplication and stores the result in the second
operand, andecl decreases the given register by 1. For more information on these and other
instructions, sedppendix B

A good project to try now is to extend the program so it will return the value of a number if the
power is O (hint, anything raised to the zero power is 1). Keep trying. If it doesn’t work at first, try
going through your program by hand with a scrap of paper, keeping track of wiebreand

%esp are pointing, what is on the stack, and what the values are in each register.
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Recursive Functions

The next program will stretch your brains even more. The program will compufadhaial of

a number. A factorial is the product of a number and all the numbers between it and one. For
example, the factorial of 7 is 7*6*5*4*3*2*1, and the factorial of 4 is 4*3*2*1. Now, one thing

you might notice is that the factorial of a number is the same as the product of a number and the
factorial just below it. For example, the factorial of 4 is 4 times the factorial of 3. The factorial of
3 is 3 times the factorial of 2. 2 is 2 times the factorial of 1. The factorial of 1 is 1. This type of
definition is called a recursive definition. That means, the definition of the factorial function
includes the factorial funtion itself. However, since all functions need to end, a recursive
definition must include &ase caseThe base case is the point where recursion will stop. Without
a base case, the function would go on forever calling itself until it eventually ran out of stack
space. In the case of the factorial, the base case is the number 1. When we hit the number 1, we
don’t run the factorial again, we just say that the factorial of 1 is 1. So, let’s run through what we
want the code to look like for our factorial function:

1. Examine the number

2.1s the number 17?

3.1f so, the answer is one

4. Otherwise, the answer is the number times the factorial of the number minus one

This would be problematic if we didn’t have local variables. In other programs, storing values in
global variables worked fine. However, global variables only provide one copy of each variable.
In this program, we will have multiple copies of the function running at the same time, all of
them needing their own copies of the da@ince local variables exist on the stack frame, and
each function call gets its own stack frame, we are okay.

Let’s look at the code to see how this works:

#PURPOSE - Given a number, this program computes the

# factorial. For example, the factorial of
# 3is3*2*1 or 6. The factorial of
# 4is 4 *3 *2*1 or 24, and so on.
#

#This program shows how to call a function recursively.
.section .data

#This program has no global data

6. By "running at the same time" | am talking about the fact that one will not have finished before a new
one is activated. | am not implying that their instructions are running at the same time.
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.section .text

.globl _start
.globl factorial #this is unneeded unless we want to share
#this function among other programs
_start:
pushl $4 #The factorial takes one argument - the
#number we want a factorial of. So, it
#gets pushed
call factorial #run the factorial function
addl $4, %esp  #Scrubs the parameter that was pushed on
#the stack
movl %eax, %ebx #factorial returns the answer in %eax, but
#we want it in %ebx to send it as our exit
#status
movl $1, %eax #call the kernel's exit function
int  $0x80

#This is the actual function definition

.type factorial,@function

factorial:

pushl %ebp #standard function stuff - we have to
#restore %ebp to its prior state before
#returning, so we have to push it

movl %esp, %ebp #This is because we don't want to modify
#the stack pointer, so we use %ebp.

movl 8(%ebp), %eax #This moves the first argument to %eax
#4(%ebp) holds the return address, and
#8(%ebp) holds the first parameter
cmpl  $1, %eax #If the number is 1, that is our base
#case, and we simply return (1 is
#already in %eax as the return value)
je end_factorial

decl %eax #otherwise, decrease the value
pushl %eax #push it for our call to factorial
call factorial #call factorial

movl 8(%ebp), %ebx #%eax has the return value, so we
#reload our parameter into %ebx
imull %ebx, %eax #multiply that by the result of the
#last call to factorial (in %eax)
#the answer is stored in %eax, which
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#is good since that's where return

#values go.

end_factorial:

movl  %ebp, %esp #standard function return stuff - we

popl %ebp #have to restore %ebp and %esp to where
#they were before the function started

ret #return to the function (this pops the

#return value, too)

Assemble, link, and run it with these commands:

as factorial.s -0 factorial.o
Id factorial.o -o factorial
Jfactorial

echo $?

This should give you the value 24. 24 is the factorial of 4, you can test it out yourself with a
calculator: 4 *3*2*1 =24,

I'm guessing you didn’t understand the whole code listing. Let’s go through it a line at a time to
see what is happening.

_start:
pushl $4
call factorial

Okay, this program is intended to compute the factorial of the number 4. When programming
functions, you are supposed to put the parameters of the function on the top of the stack right
before you call it. Remember, a functioparametersare the data that you want the function to
work with. In this case, the factorial function takes 1 parameter - the number you want the
factorial of.

Thepushl instruction puts the given value at the top of the stack. ddfie instruction then
makes the function call.

Next we have these lines:
addl $4, %esp
movl %eax, %ebx

movl $1, %eax
int $0x80
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This takes place aftdéactorial has finished and computed the factorial of 4 for us. Now we
have to clean up the stack. Thedl instruction moves the stack pointer back to where it was
before we pushed thigt onto the stack. You should always clean up your stack parameters after a
function call returns.

The next instruction moveXeax to %ebx. What's in%eax? It isfactorial ~ ’s return value. In

our case, it is the value of the factorial function. With 4 as our parameter, 24 should be our return
value. Remember, return values are always storéeeix. \WWe want to return this value as the

status code to the operating system. However, Linux requires that the program’s exit status be
stored in%ebx, Nnot%eax, SO we have to move it. Then we do the standard exit system call.

The nice thing about function calls is that:

« Other programmers don’t have to know anything about them except it's arguments to use them.
+ They provide standardized building blocks from which you can form a program.

« They can be called multiple times and from multiple locations and they always know how to
get back to where they were sincall  pushes the return address onto the stack.

These are the main advantages of functions. Larger programs also use functions to break down
complex pieces of code into smaller, simpler ones. In fact, almost all of programming is writing
and calling functions.

Let’'s now take a look at how thiactorial function itself is implemented.

Before the function starts, we have this directive:

.type factorial,@function

factorial:

The.type directive tells the linker thatctorial is a function. This isn’t really needed unless
we were usindactorial in other programs. We have included it for completeness. The line

that saydactorial: gives the symboalactorial the storage location of the next instruction.

That's howcall knew where to go when we saddll factorial

The first real instructions of the function are:

pushl %ebp
movl  %esp, %ebp

As shown in the previous program, this creates the stack frame for this function. These two lines
will be the way you should start every function.

The next instruction is this:

movl  8(%ebp), %eax
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This uses base pointer addressing to move the first parameter of the functieseato
Remember(%ebp) has the oldbebp, 4(%ebp) has the return address, aB@ebp) is the
location of the first parameter to the function. If you think back, this will be the value 4 on the
first call, since that was what we pushed on the stack before calling the functiomp(sith

$4). parameter int@eax. As this function calls itself, it will have other values, too.

Next, we check to see if we've hit our base case (a parameter of 1). If so, we jump to the
instruction at the labednd_factorial , where it will be returned. Et’s already #aeax which
we mentioned earlier is where you put return values. That is accomplished by these lines:

cmpl $1, %eax
je end_factorial

If it's not our base case, what did we say we would do? We would cafbtherial function
again with our parameter minus one. So, first we decré&ase by one:

decl %eax

decl stands for decrement. It subtracts 1 from the given register or memory loc#isam in
our case)incl isthe inverse - it adds 1. After decrementigax we push it onto the stack since
it's going to be the parameter of the next function call. And then wefaatrial again!

pushl %eax
call factorial

Okay, now we've calledactorial . One thing to remember is that after a function call, we can
never know what the registers are (exc&gsp and%ebp). So even though we had the value we
were called with irtoeax, it's not there any more. Therefore, we need pull it off the stack from
the same place we got it the first time §&toebp) ). So, we do this:

movl 8(%ebp), %ebx

Now, we want to multiply that number with the result of the factorial function. If you remember
our previous discussion, the result of functions are lefbeax. So, we need to multiplyeebx
with %eax. This is done with this instruction:

imull %ebx, %eax

This also stores the result #eax, which is exactly where we want the return value for the
function to be! Since the return value is in place we just need to leave the function. If you
remember, at the start of the function we pusbthp, and movedioesp into %ebpto create the
current stack frame. Now we reverse the operation to destroy the current stack frame and
reactivate the last one:
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end_factorial:
movl %ebp, %esp
popl %ebp

Now we're already to return, so we issue the following command

ret

This pops the top value off of the stack, and then jumps to it. If you remember our discussion
aboutcall , we said thatall first pushed the address of the next instruction onto the stack
before it jumped to the beginning of the function. So, here we pop it back off so we can return
there. The function is done, and we have our answer!

Like our previous program, you should look over the program again, and make sure you know
what everything does. Look back through this section and the previous sections for the
explanation of anything you don’t understand. Then, take a piece of paper, and go through the
program step-by-step, keeping track of what the values of the registers are at each step, and what
values are on the stack. Doing this should deepen your understanding of what is going on.

Review

Know the Concepts

« What are primitives?

« What are calling conventions?

« What is the stack?

« How dopushl andpopl affect the stack? What special-purpose register do they affect?
« What are local variables and what are they used for?

« Why are local variables so necessary in recursive functions?

« What are%ebp and%esp used for?

- What is a stack frame?

Use the Concepts

« Write a function calleédquare which receives one argument and returns the square of that
argument.
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- Write a program to test yowquare function.

« Convert the maximum program giventime Section calle#inding a Maximum Value
Chapter 3o that it is a function which takes a pointer to several values and returns their
maximum. Write a program that calls maximum with 3 different lists, and returns the result of
the last one as the program’s exit status code.

- Explain the problems that would arise without a standard calling convention.

Going Further

« Do you think it's better for a system to have a large set of primitives or a small one, assuming
that the larger set can be written in terms of the smaller one?

« The factorial function can be written non-recursively. Do so.

« Find an application on the computer you use regularly. Try to locate a specific feature, and
practice breaking that feature out into functions. Define the function interfaces between that
feature and the rest of the program.

« Come up with your own calling convention. Rewrite the programs in this chapter using it. An
example of a different calling convention would be to pass paramters in registers rather than
the stack, to pass them in a different order, to return values in other registers or memory
locations. Whatever you pick, be consistent and apply it throughout the whole program.

« Can you build a calling convention without using the stack? What limitations might it have?

« What test cases should we use in our example program to check to see if it is working properly?
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A lot of computer programming deals with files. After all, when we reboot our computers, the
only thing that remains from previous sessions are the things that have been put on disk. Data
which is stored in files is callepersistentlata, because it persists in files that remain on the disk
even when the program isn’t running..

The UNIX File Concept

Each operating system has it's own way of dealing with files. However, the UNIX method, which
is used on Linux, is the simplest and most universal. UNIX files, no matter what program created
them, can all be accessed as a sequential stream of bytes. When you access a file, you start by
opening it by name. The operating system then gives you a number, céiledescriptor which

you use to refer to the file until you are through with it. You can then read and write to the file
using its file descriptor. When you are done reading and writing, you then close the file, which
then makes the file descriptor useless.

In our programs we will deal with files in the following ways:

1. Tell Linux the name of the file to open, and in what mode you want it opened (read, write,
both read and write, create it if it doesn't exist, etc.). This is handled witbhgbe system
call, which takes a filename, a number representing the mode, and a permission set as its
parameterzseax will hold the system call number, which is 5. The address of the first
character of the filename should be storeébigbx. The read/write intentions, represented as
a number, should be stored3secx. For now, use 0 for files you want to read from, and
03101 for files you want to write to (you must include the leading zEFially, the
permission set should be stored as a numbesddx. If you are unfamiliar with UNIX
permissions, just use 0666 for the permissions (again, you must include the leading zero).

2. Linux will then return to you a file descriptor #eax. Remember, this is a number that you
use to refer to this file throughout your program.

3. Next you will operate on the file doing reads and/or writes, each time giving Linux the file
descriptor you want to usesad is system call 3, and to call it you need to have the file
descriptor inebx, the address of a buffer for storing the data that is readdex, and the
size of the buffer iroedx. Buffers will be explained ithe Section calle®uffers andbss .
read will return with either the number of characters read from the file, or an error code.
Error codes can be distinguished because they are always negative numbers (more
information on negative numbers can be foun&imapter 1). write is system call 4, and it

1. This will be explained in more detail ithe Section calledruth, Falsehood, and Binary Numbers
Chapter 10
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requires the same parameters astlad system call, except that the buffer should already
be filled with the data to write out. Therite system call will give back the number of bytes
written in %eax or an error code.

4. When you are through with your files, you can then tell Linux to close them. Afterwards,
your file descriptor is no longer valid. This is done usohgse , system call 6. The only
parameter t@lose is the file descriptor, which is placed %ebx

Buffers and .bss

In the previous section we mentioned buffers without explaining what they were. A buffer is a
continuous block of bytes used for bulk data transfer. When you request to read a file, the
operating system needs to have a place to store the data it reads. That place is called a buffer.
Usually buffers are only used to store data temporarily, and it is then read from the buffers and
converted to a form that is easier for the programs to handle. Our programs won’t be complicated
enough to need that done. For an example, let’s say that you want to read in a single line of text
from a file but you do not know how long that line is. You would then simply read a large number
of bytes/characters from the file into a buffer, look for the end-of-line character, and copy all of
the characters to that end-of-line character to another location. If you didn’t find and end-of-line
character, you would allocate another buffer and continue reading. You would probably wind up
with some characters left over in your buffer in this case, which you would use as the starting
point when you next need data from the file.

Another thing to note is that buffers are a fixed size, set by the programmer. So, if you want to
read in data 500 bytes at a time, you sendréfag system call the address of a 500-byte unused
location, and send it the number 500 so it knows how big it is. You can make it smaller or bigger,
depending on your application’s needs.

To create a buffer, you need to either reserve static or dynamic storage. Static storage is what we
have talked about so far, storage locations declared usimg or .byte directives. Dynamic

storage will be discussed the Section calleGetting More Memoryn Chapter 9There are

problems, though, with declaring buffers usibgte . First, it is tedious to type. You would have

to type 500 numbers after thigyte declaration, and they wouldn’t be used for anything but to

take up space. Second, it uses up space in the executable. In the examples we've used so far, it
doesn’t use up too much, but that can change in larger programs. If you want 500 bytes you have
to type in 500 numbers and it wastes 500 bytes in the executable. There is a solution to both of
these. So far, we have discussed two program sectiongethe and thedata sections. There

is another section called thiess . This section is like the data section, except that it doesn’t take
up space in the executable. This section can reserve storage, but it can’t initialize it.datdhe

2. While this sounds complicated, most of the time in programming you will not need to deal directly with
buffers and file descriptors. I@hapter 8you will learn how to use existing code present in Linux to handle
most of the complications of file input/output for you.
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section, you could reserve storage and set it to an initial value. Ig¢he section, you can'’t set
an initial value. This is useful for buffers because we don’t need to initialize them anyway, we
just need to reserve storage. In order to do this, we do the following commands:

.section .bss
dcomm my_buffer, 500

This directive,lcomm , will create a symbolmy_buffer , that refers to a 500-byte storage
location that we can use as a buffer. We can then do the following, assuming we have opened a
file for reading and have placed the file descriptovoebx:

movl $my_buffer, %ecx
movl 500, %edx

movl 3, %eax

int  $0x80

This will read up to 500 bytes into our buffer. In this example, | placed a dollar sign in front of
my_buffer . Remember that the reason for this is that without the dollar signbuffer is

treated as a memory location, and is accessed in direct addressing mode. The dollar sign switches
it to immediate mode addressing, which actually loads the number representsdtnffer

(i.e. - the address of the start of our buffer). (which is the address dfuffer ) itself into %ecx.

Standard and Special Files

You might think that programs start without any files open by default. This is not true. Linux
programs usually have at least three open file descriptors when they begin. They are:

STDIN

This is thestandard inputlt is a read-only file, and usually represents your keybddiuis
is always file descriptor O.

STDOUT

This is thestandard outputlt is a write-only file, and usually represents your screen
display. This is always file descriptor 1.

STDERR

This is yourstandard error It is a write-only file, and usually represents your screen
display. Most regular processing output goeST®@OUT but any error messages that come

3. Aswe mentioned earlier, in Linux, almost everything is a "file". Your keyboard input is considered a file,
and so is your screen display.
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up in the process go ®TDERRThis way, if you want to, you can split them up into separate
places. This is always file descriptor 2.

Any of these "files" can be redirected from or to a real file, rather than a screen or a keyboard.
This is outside the scope of this book, but any good book on the UNIX command-line will
describe it in detail. The program itself does not even need to be aware of this indirection - it can
just use the standard file descriptors as usual.

Notice that many of the files you write to aren’t files at all. UNIX-based operating systems treat

all input/output systems as files. Network connections are treated as files, your serial port is
treated like a file, even your audio devices are treated as files. Communication between processes
is usually done through special files called pipes. Some of these files have different methods of
opening and creating them than regular files (i.e. - they don’t usepire system call), but they

can all be read from and written to using the standead andwrite system calls.

Using Files in a Program

We are going to write a simple program to illustrate these concepts. The program will take two
files, and read from one, convert all of its lower-case letters to upper-case, and write to the other
file. Before we do so, let’s think about what we need to do to get the job done:

« Have a function that takes a block of memory and converts it to upper-case. This function
would need an address of a block of memory and its size as parameters.

+ Have a section of code that repeatedly reads in to a buffer, calls our conversion function on the
buffer, and then writes the buffer back out to the other file.

« Begin the program by opening the necessary files.

Notice that I've specified things in reverse order that they will be done. That's a useful trick in
writing complex programs - first decide the meat of what is being done. In this case, it's

converting blocks of characters to upper-case. Then, you think about what all needs to be setup
and processed to get that to happen. In this case, you have to open files, and continually read and
write blocks to disk. One of the keys of programming is continually breaking down problems into
smaller and smaller chunks until it's small enough that you can easily solve the problem. Then
you can build these chunks back up until you have a working program.

You may have been thinking that you will never remember all of these numbers being thrown at
you - the system call numbers, the interrupt number, etc. In this program we will also introduce a
new directive,equ which should help outequ allows you to assign names to numbers. For

4. Maureen Sprankle’®roblem Solving and Programming Concefgsin excellent book on the problem-
solving process applied to computer programming.
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example, if you didequ LINUX_SYSCALL, 0x80 , any time after that you wrote
LINUX_SYSCALL, the assembler would substitae80 for that. So now, you can write

int $LINUX_SYSCALL

which is much easier to read, and much easier to remember. Coding is complex, but there are a
lot of things we can do like this to make it easier.

Here is the program. Note that we have more labels than we actually use for jumps, because some
of them are just there for clarity. Try to trace through the program and see what happens in
various cases. An in-depth explanation of the program will follow.

#PURPOSE: This program converts an input file

# to an output file with all letters
# converted to uppercase.
#

#PROCESSING: 1) Open the input file
2) Open the output file
4) While we’re not at the end of the input file
a) read part of file into our memory buffer
b) go through each byte of memory
if the byte is a lower-case letter,
convert it to uppercase
c) write the memory buffer to output file

HH O OH H HH

.section .data
#H#HHA#HCONSTANT SH#t#H#HHHH

#system call numbers
.equ SYS_OPEN, 5
.equ SYS_WRITE, 4
.equ SYS_READ, 3
.equ SYS CLOSE, 6
.equ SYS_EXIT, 1

#options for open (look at
#/usr/include/asm/fcntl.h for

#various values. You can combine them
#by adding them or ORing them)

#This is discussed at greater length

#in "Counting Like a Computer”

.equ O_RDONLY, 0

.equ O_CREAT_WRONLY_TRUNC, 03101
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#standard file descriptors
.equ STDIN, O

.equ STDOUT, 1

.equ STDERR, 2

#system call interrupt
.equ LINUX_SYSCALL, 0x80

.equ END_OF_FILE, O #This is the return value
#of read which means we've

#hit the end of the file

.equ NUMBER_ARGUMENTS, 2

.section .bss

#Buffer - this is where the data is loaded into
# from the data file and written from
# into the output file. This should
# never exceed 16,000 for various
# reasons.

.equ BUFFER_SIZE, 500
dcomm BUFFER_DATA, BUFFER_SIZE

.section .text

#STACK POSITIONS

.equ ST_SIZE_RESERVE, 8

.equ ST_FD_IN, -4

.equ ST_FD_OUT, -8

.equ ST_ARGC, 0 #Number of arguments
.equ ST ARGV O, 4 #Name of program

.equ ST_ARGV_1, 8  #lnput file name

.equ ST_ARGV_2, 12  #Output file name

.globl _start
_start:

###INITIALIZE PROGRAM###
#isave the stack pointer

movl  %esp, %ebp

#Allocate space for our file descriptors

#on the stack
subl $ST_SIZE_RESERVE, %esp
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open_files:

open_fd_in:

###OPEN INPUT FILE###
#open syscall

movl $SYS_OPEN, %eax
#input filename into %ebx

movl ST_ARGV_1(%ebp), %ebx
#read-only flag

movl $O_RDONLY, %ecx
#this doesn’t really matter for reading
movl  $0666, %edx

#call Linux

int  $LINUX_SYSCALL

store_fd_in:
#save the given file descriptor
movl %eax, ST_FD_IN(%ebp)

open_fd_out:

##OPEN OUTPUT FILE###
#open the file

movl $SYS OPEN, %eax
#output filename into %ebx

movl ST _ARGV_2(%ebp), %ebx
#flags for writing to the file

movl $O_CREAT_WRONLY_TRUNC, %ecx
#mode for new file (if it's created)
movl  $0666, %edx

#call Linux

int  $LINUX_SYSCALL

store_fd_out:
#store the file descriptor here
movl %eax, ST_FD_OUT(%ebp)

##H#BEGIN MAIN LOOP###
read_loop_begin:

###READ IN A BLOCK FROM THE INPUT FILE###
movl $SYS READ, %eax

#get the input file descriptor

movl ST _FD_IN(%ebp), %ebx

#the location to read into

movl $BUFFER_DATA, %ecx
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#the size of the buffer

movl $BUFFER_SIZE, %edx

#Size of buffer read is returned in %eax
int  $LINUX SYSCALL

#HEXIT IF WE'VE REACHED THE END###
#check for end of file marker

cmpl  $END_OF_FILE, %eax

#if found or on error, go to the end

jle end_loop

continue_read_loop:
###CONVERT THE BLOCK TO UPPER CASE###

pushl $BUFFER_DATA #location of buffer
pushl %eax #size of the buffer
call convert_to_upper

popl %eax #get the size back
addl  $4, %esp #restore %esp

##H#WRITE THE BLOCK OUT TO THE OUTPUT FILE###
#size of the buffer

movl %eax, %edx

movl $SYS_WRITE, %eax

#file to use

movl ST_FD_OUT(%ebp), %ebx

#location of the buffer

movl $BUFFER_DATA, %ecx

int  $LINUX SYSCALL

###CONTINUE THE LOOP###
jmp read_loop_begin

end_loop:

###CLOSE THE FILES###

#NOTE - we don't need to do error checking
# on these, because error conditions
# don’t signify anything special here
movl $SYS CLOSE, %eax

movl ST_FD_OUT(%ebp), %ebx

int $LINUX_SYSCALL

movl $SYS CLOSE, %eax

movl ST_FD_IN(%ebp), %ebx
int  $LINUX_SYSCALL
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movl $SYS_EXIT, %eax
movl  $0, %ebx

int SLINUX_SYSCALL

#PURPOSE: This function actually does the

# conversion to upper case for a block
#

#INPUT: The first parameter is the location

# of the block of memory to convert

# The second parameter is the length of
# that buffer

#

#OUTPUT: This function overwrites the current
# buffer with the upper-casified version.
#

#VARIABLES:

# %eax - beginning of buffer

# %ebx - length of buffer

# %edi - current buffer offset

# %cl - current byte being examined

# (first part of %ecx)

#

###CONSTANTSH#

#The lower boundary of our search

.equ LOWERCASE_A, &

#The upper boundary of our search

.equ LOWERCASE _Z, 7’

#Conversion between upper and lower case
.equ UPPER_CONVERSION, A’ - &

###STACK STUFF###

.equ ST_BUFFER_LEN, 8 #lLength of buffer
.equ ST _BUFFER, 12 #actual buffer
convert_to_upper:

pushl %ebp

movl  %esp, %ebp

###SET UP VARIABLES###
movl ST_BUFFER(%ebp), %eax
movl ST _BUFFER_LEN(%ebp), %ebx

Chapter 5. Dealing with Files
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movl  $0, %edi

#if a buffer with zero length was given
#to us, just leave

cmpl  $0, %ebx

je end_convert_loop

convert_loop:
#get the current byte
movb (%eax,%edi,1), %cl

#go to the next byte unless it is between
#a' and 7’

cmpb  $LOWERCASE_A, %:cl

jl next_byte

cmpb  $LOWERCASE_Z, %cl

I[o} next_byte

#otherwise convert the byte to uppercase
addb $UPPER_CONVERSION, %cl
#and store it back

movb  %cl, (Y%eax,%edi,1)

next_byte:

incl  %edi #next byte

cmpl  %edi, %ebx #continue unless
#we've reached the
#end

jne  convert_loop

end_convert_loop:

#no return value, just leave
movl  %ebp, %esp

popl %ebp

ret

Type in this program awupper.s , and then enter in the following commands:

as toupper.s -0 toupper.o
Id toupper.o -0 toupper

This builds a program calledupper , which converts all of the lowercase characters in a file to
uppercase. For example, to convert thetfilgpper.s  to uppercase, type in the following
command:
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Jtoupper toupper.s toupper.uppercase

You will now find in the filetoupper.uppercase an uppercase version of your original file.
Let's examine how the program works.

The first section of the program is marke@NSTANTSN programming, a constant is a value

that is assigned when a program assembles or compiles, and is never changed. | make a habit of
placing all of my constants together at the beginning of the program. It's only necessary to
declare them before you use them, but putting them all at the beginning makes them easy to find.
Making them all upper-case makes it obvious in your program which values are constants and
where to find theni.In assembly language, we declare constants withete directive as

mentioned before. Here, we simply give names to all of the standard numbers we've used so far,
like system call numbers, the syscall interrupt number, and file open options.

The next section is markeBUFFERS We only use one buffer in this program, which we call
BUFFER_DATAWe also define a consta®yUFFER_SIZE, which holds the size of the buffer. If

we always refer to this constant rather than typing out the number 500 whenever we need to use
the size of the buffer, if it later changes, we only need to modify this value, rather than having to
go through the entire program and changing all of the values individually.

Instead of going on the thestart  section of the program, go to the end where we define the
convert_to_upper function. This is the part that actually does the conversion.

This section begins with a list of constants that we will use The reason these are put here rather
than at the top is that they only deal with this one function. We have these definitions:

.equ LOWERCASE_A, &’
.equ LOWERCASE_Z, 'z’
.equ UPPER_CONVERSION, 'A’ - &

The first two simply define the letters that are the boundaries of what we are searching for.
Remember that in the computer, letters are represented as numbers. Therefore, we can use
LOWERCASE_ia comparisons, additions, subtractions, or anything else we can use numbers in.
Also, notice we define the constasiPPER_CONVERSIObince letters are represented as

numbers, we can subtract them. Subtracting an upper-case letter from the same lower-case letter
gives us how much we need to add to a lower-case letter to make it upper case. If that doesn'’t
make sense, look at the ASCII code tables themselve(eendix D. You'll notice that the

number for the characteéris 65 and the charactaris 97. The conversion factor is then -32. For

any lowercase letter if you add -32, you will get it’'s capital equivalent.

After this, we have some constants labelBItACK POSITIONS Remember that function
parameters are pushed onto the stack before function calls. These constants (prefiggddavith

5. This is fairly standard practice among programmers in all languages.
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clarity) define where in the stack we should expect to find each piece of data. The return address
is at position 4 ¥oesp, the length of the buffer is at position 8%esp, and the address of the

buffer is at position 12 #6esp. Using symbols for these numbers instead of the numbers
themselves makes it easier to see what data is being used and moved.

Next comes the labebnvert_to_upper . This is the entry point of the function. The first two
lines are our standard function lines to save the stack pointer. The next two lines

movl ST_BUFFER(%ebp), %eax
movl ST _BUFFER_LEN(%ebp), %ebx

move the function parameters into the appropriate registers for use. Then, we load zero into
%edi. What we are going to do is iterate through each byte of the buffer by loading from the
location%eax + %edi, incrementingsedi, and repeating untibedi is equal to the buffer length
stored in%ebx. The lines

cmpl  $0, %ebx
je end_convert_loop

are just a sanity check to make sure that noone gave us a buffer of zero size. If they did, we just
clean up and leave. Guarding against potential user and programming errors is an important task
of a programmer. You can always specify that your function should not take a buffer of zero size,
but it's even better to have the function check and have a reliable exit plan if it happens.

Now we start our loop. First, it moves a byte i@l . The code for this is

movb (%eax,%edi,1), %cl

It is using an indexed indirect addressing mode. It says to stéseat and go%edi locations
forward, with each location being 1 byte big. It takes the value found there, and p@dt in

After this it checks to see if that value is in the range of lower-@ateelower-case. To check the
range, it simply checks to see if the letter is smaller thalfiit is, it can't be a lower-case letter.
Likewise, if it is larger tharg, it can’t be a lower-case letter. So, in each of these cases, it simply
moves on. If it is in the proper range, it then adds the uppercase conversion, and stores it back
into the buffer.

Either way, it then goes to the next value by incrementing %cl;. Next it checks to see if we are at
the end of the buffer. If we are not at the end, we jump back to the beginning of the loop (the
convert_loop label). If we are at the end, it simply continues on to the end of the function.
Because we are modifying the buffer directly, we don’t need to return anything to the calling
program - the changes are already in the buffer. The kfzelconvert_loop  is not needed, but

it's there so it’'s easy to see where the parts of the program are.
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Now we know how the conversion process works. Now we need to figure out how to get the data
in and out of the files.

Before reading and writing the files we must open them. The Udfleh system call is what
handles this. It takes the following parameters:

+  %eax contains the system call number as usual - 5 in this case.

+  %ebx contains a pointer to a string that is the name of the file to open. The string must be
terminated with the null character.

+  %ecx contains the options used for opening the file. These tell Linux how to open the file.
They can indicate things such as open for reading, open for writing, open for reading and
writing, create if it doesn't exist, delete the file if it already exists, etc. We will not go into how
to create the numbers for the options uttig Section calledruth, Falsehood, and Binary
Numbersn Chapter 10For now, just trust the numbers we come up with.

+  %edx contains the permissions that are used to open the file. This is used in case the file has to
be created first, so Linux knows what permissions to create the file with. These are expressed
in octal, just like regular UNIX permissiors.

After making the system call, the file descriptor of the newly-opened file is stogdar

So, what files are we opening? In this example, we will be opening the files specified on the
command-line. Fortunately, command-line parameters are already stored by Linux in an
easy-to-access location, and are already null-terminated. When a Linux program begins, all
pointers to command-line arguments are stored on the stack. The number of arguments is stored
at8(%esp) , the name of the program is storedia{%esp) , and the arguments are stored from
16(%esp) on. In the C Programming language, this is referred to aarthe array, so we will

refer to it that way in our program.

The first thing our program does is save the current stack positiaelip and then reserve some
space on the stack to store the file descriptors. After this, it starts opening files.

The first file the program opens is the input file, which is the first command-line argument. We do
this by setting up the system call. We put the file name 9a¢bx, the read-only mode number

into %ecx, the default mode af0666 into %edx, and the system call number irieeax After the
system call, the file is open and the file descriptor is storeddax.” The file descriptor is then
transferred to it's appropriate place on the stack.

6. If you aren’t familiar with UNIX permissions, just p#i0666 here. Don'’t forget the leading zero, as it
means that the number is an octal number.

7. Notice that we don't do any error checking on this. That is done just to keep the program simple. In
normal programs, every system call should normally be checked for success or failure. In failure cases,
%eax will hold an error code instead of a return value. Error codes are negative, so they can be detected by
comparingeaxto zero and jumping if it is less than zero.
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The same is then done for the output file, except that it is created with a write-only,
create-if-doesn’t-exist, truncate-if-does-exist mode. Its file descriptor is stored as well.

Now we get to the main part - the read/write loop. Basically, we will read fixed-size chunks of
data from the input file, call our conversion function on it, and write it back to the output file.
Although we are reading fixed-size chunks, the size of the chunks don’t matter for this program -
we are just operating on straight sequences of characters. We could read it in with as little or as
large of chunks as we want, and it still would work properly.

The first part of the loop is to read the data. This usesd¢he system call. This call just takes a

file descriptor to read from, a buffer to write into, and the size of the buffer (i.e. - the maximum
number of bytes that could be written). The system call returns the number of bytes actually read,
or end-of-file (the number 0).

After reading a block, we checkeax for an end-of-file marker. If found, it exits the loop.
Otherwise we keep on going.

After the data is read, thevnvert_to_upper function is called with the buffer we just read in

and the number of characters read in the previous system call. After this function executes, the
buffer should be capitalized and ready to write out. The registers are then restored with what they
had before.

Finally, we issue avrite  system call, which is exactly like thead system call, except that it
moves the data from the buffer out to the file. Now we just go back to the beginning of the loop.

After the loop exits (remember, it exits if, after a read, it detects the end of the file), it simply
closes its file descriptors and exits. The close system call just takes the file descriptor to close in
%ebx.

The program is then finished!

Review

Know the Concepts

- Describe the lifecycle of a file descriptor.

- What are the standard file descriptors and what are they used for?
« What is a buffer?

« What is the difference between thiata section and thebss section?

« What are the system calls related to reading and writing files?
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Use the Concepts

« Modify the toupper program so that it reads fro8irDIN and writes tcSTDOUTInstead of
using the files on the command-line.

« Change the size of the buffer.

« Rewrite the program so that it uses storage inlke section rather than the stack to store the
file descriptors.

« Write a program that will create a file callédynow.txt and write the words "Hey diddle
diddle!" into it.

Going Further

« What difference does the size of the buffer make?
« What error results can be returned by each of these system calls?

« Make the program able to either operate on command-line arguments 8TDB¢or STDOUT
based on the number of command-line arguments specifietRBLC

- Modify the program so that it checks the results of each system call, and prints out an error
message t&eTDOUTwhen it occurs.
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As mentioned irChapter S many applications deal with data thapisrsistent meaning that the

data lives longer than the program by being stored on disk inf files. You can shut down the
program and open it back up, and you are back where you started. Now, there are two basic kinds
of persistent data - structured and unstructured. Unstructured data is like what we dealt with in
thetoupper program. It just dealt with text files that were entered by a person. The contents of
the files weren't usable by a program because a program can't interpret what the user is trying to
say in random text.

Structured data, on the other hand, is what computers excel at handling. Structured data is data
that is divided up into fields and records. For the most part, the fields and records are fixed-length.
Because the data is divided into fixed-length records and fixed-format fields, the computer can
interpret the data. Structured data can contain variable-length fields, but at that point you are
usually better off with a database.

This chapter deals with reading and writing simple fixed-length records. Let's say we wanted to
store some basic information about people we know. We could imagine the following example
fixed-length record about people:

« Firstname - 40 bytes
« Lastname - 40 bytes
« Address - 240 bytes
« Age - 4 bytes

In this, everything is character data except for the age, which is simply a numeric field, using a
standard 4-byte word (we could just use a single byte for this, but keeping it at a word makes it
easier to process).

In programming, you often have certain definitions that you will use over and over again within

the program, or perhaps within several programs. It is good to separate these out into files that are
simply included into the assembly language files as needed. For example, in our next programs
we will need to access the different parts of the record above. This means we need to know the
offsets of each field from the beginning of the record in order to access them using base pointer
addressing. The following constants describe the offsets to the above structure. Put them in a file
namedrecord-def.s

1. A database is a program which handles persistent structured data for you. You don't have to write the
programs to read and write the data to disk, to do lookups, or even to do basic processing. It is a very high-
level interface to structured data which, although it adds some overhead and additional complexity, is very
useful for complex data processing tasks. References for learning how databases work areQdibtguien

13
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.equ RECORD_FIRSTNAME, 0
.equ RECORD_LASTNAME, 40
.equ RECORD_ADDRESS, 80
.equ RECORD_AGE, 320

.equ RECORD_SIZE, 324

In addition, there are several constants that we have been defining over and over in our programs,
and it is useful to put them in a file, so that we don’t have to keep entering them. Put the
following constants in a file callelthux.s

#Common Linux Definitions

#System Call Numbers
.equ SYS_EXIT, 1
.equ SYS_READ, 3
.equ SYS_WRITE, 4
.equ SYS_OPEN, 5
.equ SYS_CLOSE, 6
.equ SYS BRK, 45

#System Call Interrupt Number
.equ LINUX_SYSCALL, 0x80

#Standard File Descriptors
.equ STDIN, O

.equ STDOUT, 1

.equ STDERR, 2

#Common Status Codes
.equ END_OF FILE, 0

We will write three programs in this chapter using the structure definestend-def.s . The
first program will build a file containing several records as defined above. The second program
will display the records in the file. The third program will add 1 year to the age of every record.

In addition to the standard constants we will be using throughout the programs, there are also two
functions that we will be using in several of the programs - one which reads a record and one
which writes a record.

What parameters do these functions need in order to operate? We basically need:
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- The location of a buffer that we can read a record into
+ The file descriptor that we want to read from or write to

Let’s look at our reading function first:

.include "record-def.s"
.include "linux.s"

#PURPOSE: This function reads a record from the file

# descriptor

#

#INPUT: The file descriptor and a buffer

#

#OUTPUT: This function writes the data to the buffer
# and returns a status code.

#

#STACK LOCAL VARIABLES
.equ ST_READ_BUFFER, 8
.equ ST_FILEDES, 12
.section .text
.globl read_record
type read_record, @function

read_record:
pushl %ebp
movl  %esp, %ebp

pushl %ebx

movl ST_FILEDES(%ebp), %ebx

movl ST _READ_BUFFER(%ebp), %ecx
movl $RECORD_SIZE, %edx

movl $SYS_READ, %eax

int SLINUX_SYSCALL

#NOTE - %eax has the return value, which we will
# give back to our calling program
popl %ebx

movl  %ebp, %esp

popl %ebp
ret
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It's a pretty simply function. It just reads data the size of our structure into an appropriately sized
buffer from the given file descriptor. The writing one is similar:

.include "linux.s"
.include "record-def.s"
#PURPOSE: This function writes a record to

# the given file descriptor

#

#INPUT: The file descriptor and a buffer

#

#OUTPUT: This function produces a status code
#

#STACK LOCAL VARIABLES
.equ ST_WRITE_BUFFER, 8
.equ ST_FILEDES, 12
.section .text
.globl write_record
type write_record, @function

write_record:
pushl %ebp
movl  %esp, %ebp

pushl %ebx

movl $SYS WRITE, %eax

movl ST_FILEDES(%ebp), %ebx

movl ST _WRITE_BUFFER(%ebp), %ecx
movl $RECORD_SIZE, %edx

int  $LINUX_SYSCALL

#NOTE - %eax has the return value, which we will
# give back to our calling program

popl %ebx

movl  %ebp, %esp

popl %ebp
ret

Now that we have our basic definitions down, we are ready to write our programs.
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This program will simply write some hardcoded records to disk. It will:

+ Open the file
- Write three records

. Close the file

Type the following code into a file callegrite-records.s

.include "linux.s"

.include "record-def.s"

.section .data

#Constant data of the records we want to write
#Each text data item is padded to the proper

#length with null (i.e. 0) bytes.

#.rept is used to pad each item.

rept tells

#the assembler to repeat the section between
#.rept and .endr the number of times specified.
#This is used in this program to add extra null

#characters at the end of each field to fill

#it up
recordl:
.ascii "Fredrick\0"

.rept 31 #Padding to 40 bytes

.byte 0
.endr

.ascii "Bartlett\0"

rept 31 #Padding to 40 bytes

.byte 0
.endr

.ascii "4242 S Prairie\nTulsa, OK 55555\0"
.rept 209 #Padding to 240 bytes

.byte 0
.endr

Jdong 45

record2:
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.ascii "Marilyn\0"

rept 32 #Padding to 40 bytes
.byte 0

.endr

.ascii "Taylor\0"

rept 33 #Padding to 40 bytes
.byte 0

.endr

.ascii "2224 S Johannan St\nChicago, IL 12345\0"
.rept 203 #Padding to 240 bytes

.byte 0

.endr

Jdong 29

record3:

.ascii "Derrick\0"

rept 32 #Padding to 40 bytes
.byte 0

.endr

.ascii "Mclintire\0"

rept 31 #Padding to 40 bytes
.byte 0

.endr

.ascii "500 W Oakland\nSan Diego, CA 54321\0"
.rept 206 #Padding to 240 bytes

.byte 0

.endr

dong 36

#This is the name of the file we will write to
file_name:
.ascii "test.dat\0"

.equ ST_FILE_DESCRIPTOR, -4
.globl _start
_start:
#Copy the stack pointer to %ebp
movl  %esp, %ebp
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#Allocate space to hold the file descriptor
subl  $4, %esp

#0pen the file

movl $SYS_OPEN, %eax

movl $file_name, %ebx

movl $0101, %ecx #This says to create if it
#doesn't exist, and open for
#writing

movl $0666, %edx

int $LINUX_SYSCALL

#Store the file descriptor away
movl %eax, ST _FILE _DESCRIPTOR(%ebp)

#Write the first record

pushl ST_FILE_DESCRIPTOR(%ebp)
pushl $recordl

call write_record

addl $8, %esp

#Write the second record

pushl ST_FILE_DESCRIPTOR(%ebp)
pushl $record2

call write_record

addl  $8, %esp

#Write the third record

pushl ST_FILE_DESCRIPTOR(%ebp)
pushl $record3

call write_record

addl  $8, %esp

#Close the file descriptor

movl $SYS CLOSE, %eax

movl ST_FILE_DESCRIPTOR(%ebp), %ebx
int  $LINUX_SYSCALL

#Exit the program
movl $SYS EXIT, %eax
movl $0, %ebx
int  $LINUX SYSCALL

75



Chapter 6. Reading and Writing Simple Records

This is a fairly simple program. It merely consists of defining the data we want to write in the
.data section, and then calling the right system calls and function calls to accomplish it. For a
refresher of all of the system calls used, 8gpendix C

You may have noticed the lines:

.include "linux.s"
.include "record-def.s"

These statements cause the given files to basically be pasted right there in the code. You don’t
need to do this with functions, because the linker can take care of combining functions exported
with .globl . However, constants defined in another file do need to be imported in this way.

Also, you may have noticed the use of a new assembler directiype, . This directive repeats

the contents of the file between thept and theendr directives the number of times specified
after.rept . Thisis usually used the way we used it - to pad values indita section. In our
case, we are adding null characters to the end of each field until they are their defined lengths.

To build the application, run the commands:

as write-records.s -o write-record.o
as write-record.s -0 write-record.o
Id write-record.o write-records.o -0 write-records

Here we are assembling two files separately, and then combining them together using the linker.
To run the program, just type the following:

Jwrite-records

This will cause a file calletest.dat  to be created containing the records. However, since they
contain non-printable characters (the null character, specifically), they may not be viewable by a
text editor. Therefore we need the next program to read them for us.

Reading Records

Now we will consider the process of reading records. In this program, we will read each record
and display the first name listed with each record.

Since each person’s name is a different length, we will need a function to count the number of
characters we want to write. Since we pad each field with null characters, we can simply count
characters until we reach a null charaétiiote that this means our records must contain at least
one null character each.

2. Ifyou have used C, this is what tselen  function does.
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Here is the code. Put it in a file calledunt-chars.s

#PURPOSE: Count the characters until a null byte is reached.
#

#INPUT: The address of the character string
#

#OUTPUT: Returns the count in %eax

#

#PROCESS:

# Registers used:

# %ecx - character count

# %al - current character

# %edx - current character address

type count_chars, @function
.globl count_chars

#This is where our one parameter is on the stack
.equ ST_STRING_START_ADDRESS, 8
count_chars:

pushl %ebp

movl  %esp, %ebp

#Counter starts at zero
movl $0, %ecx

#Starting address of data
movl ST_STRING_START_ADDRESS(%ebp), %edx

count_loop_begin:

#Grab the current character
movb (%edx), %al

#ls it null?

cmpb  $0, %eal

#If yes, we're done

je count_loop_end

#Otherwise, increment the counter and the pointer
incl  %ecx

incl  %edx

#Go back to the beginning of the loop
jmp count_loop_begin

count_loop_end:
#We're done. Move the count into %eax
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#and return.
movl %ecx, %eax

popl %ebp
ret

As you can see, it’s a fairly straightforward function. It simply loops through the bytes, counting
as it goes, until it hits a null character. Then it returns the count.

Our record-reading program will be fairly straightforward, too. It will do the following:

+ Open the file

+ Attempt to read a record

- If we are at the end of the file, exit

« Otherwise, count the characters of the first name
« Write the first name t&TDOUT

« Write a newline taSTDOUT

+ Go back to read another record

To write this, we need one more simple function - a function to write out a newlisg@UT
Put the following code intevrite-newline.s

.include "linux.s"
.globl write_newline
type write_newline, @function
.section .data
newline:

.ascii "\n"

.section .text

.equ ST_FILEDES, 8
write_newline:

pushl %ebp

movl  %esp, %ebp

movl $SYS_WRITE, %eax

movl ST _FILEDES(%ebp), %ebx
movl $newline, %ecx

movl $1, %edx

int SLINUX_SYSCALL
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movl  %ebp, %esp
popl %ebp
ret

Now we are ready to write the main program. Here is the codesibrecords.s

.include "linux.s"
.include "record-def.s"

.section .data
file_name:
.ascii "test.dat\0"

.section .bss
dcomm record_buffer, RECORD_SIZE

.section .text

#Main program

.globl _start
_start:

#These are the locations on the stack where

#we will store the input and output descriptors
#(FY! - we could have used memory addresses in
#a .data section instead)

.equ ST_INPUT_DESCRIPTOR, -4

.equ ST_OUTPUT_DESCRIPTOR, -8

#Copy the stack pointer to %ebp

movl  %esp, %ebp

#Allocate space to hold the file descriptors
subl  $8, %esp

#0pen the file

movl $SYS OPEN, %eax

movl $file_name, %ebx

movl $0, %ecx #This says to open read-only
movl  $0666, %edx

int  $LINUX_SYSCALL

#Save file descriptor
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movl

%eax, ST_INPUT_DESCRIPTOR(%ebp)

#Even though it's a constant, we are
#saving the output file descriptor in

#a local variable so that if we later
#decide that it isn't always going to
#be STDOUT, we can change it easily.

movl

$STDOUT, ST_OUTPUT_DESCRIPTOR(%ebp)

record_read_loop:
pushl ST_INPUT_DESCRIPTOR(%ebp)
pushl $record_buffer

call
addl

read_record
$8, %esp

#Returns the number of bytes read.
#If it isn’t the same number we
#requested, then it's either an
#end-of-file, or an error, so we're
#quitting

cmpl
jne

$RECORD_SIZE, %eax

finished_reading

#Otherwise, print out the first name
#but first, we must know it's size

pushl
call
addl

movl
movl
movl
movl
int
pushl

call
addl

jmp

$RECORD_FIRSTNAME + record_buffer
count_chars
$4, %esp

%eax, %edx
ST_OUTPUT_DESCRIPTOR(%ebp), %ebx
$SYS WRITE, %eax

$RECORD_FIRSTNAME + record_buffer, %ecx
SLINUX_SYSCALL

ST_OUTPUT_DESCRIPTOR(%ebp)

write_newline

$4, %esp

record_read_loop

finished_reading:
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movl  $SYS_EXIT, %eax
mov! $0, %ebx
int $LINUX_SYSCALL

To build this program, we need to assemble all of the parts and link them together:

as read-record.s -0 read-record.o

as count-chars.s -0 count-chars.o

as write-newline.s -0 write-newline.o

as read-records.s -0 read-records.o

Id read-record.o count-chars.o write-newline.o \
read-records.o -0 read-records

The backslash in the first line simply means that the command continues on the next line. You
can run your program by doingread-records

As you can see, this program opens the file and then runs a loop of reading, checking for the end
of file, and writing the firstname. The one construct that might be new is the line that says:

pushl $RECORD_FIRSTNAME + record_buffer

It looks like we are combining and add instruction with a push instruction, but we are not. You
see, bottRECORD_FIRSTNAM&ndrecord_buffer are constants. The first is a direct constant,
created through the use ofeqju directive, while the latter is defined automatically by the
assembler through its use as a label (it’'s value being the address that the data that follows it will
start at). Since they are both constants that the assembler knows, it is able to add them together
while it is assembling your program, so the whole instruction is a single immediate-mode push of
a single constant.

TheRECORD_FIRSTNAMEbNstant is the number of bytes after the beginning of a record before
we hit the first namerecord_buffer is the name of our buffer for holding records. Adding
them together gets us the address of the first name member of the record stored in
record_buffer

Modifying the Records

In this section, we will write a program that:

« Opens an input and output file
» Reads records from the input

« Increments the age
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« Writes the new record to the output file

Like most programs we've encountered recently, this program is pretty straightfotward.

.include "linux.s"
.include "record-def.s"

.section .data
input_file_name:
.ascii "test.dat\0"

output_file_name:
.ascii "testout.dat\0"

.section .bss
dcomm record_buffer, RECORD_SIZE

#Stack offsets of local variables
.equ ST_INPUT_DESCRIPTOR, -4
.equ ST_OUTPUT_DESCRIPTOR, -8

.section .text

.globl _start

_start:

#Copy stack pointer and make room for local variables
movl  %esp, %ebp

subl  $8, %esp

#Open file for reading

movl $SYS_OPEN, %eax
movl  $input_file_name, %ebx
movl $0, %ecx

movl  $0666, %edx

int  $LINUX_SYSCALL

movl %eax, ST_INPUT_DESCRIPTOR(%ebp)

#0Open file for writing

movl $SYS_ OPEN, %eax
movl $output_file_name, %ebx
movl $0101, %ecx

3. You will find that after learning the mechanics of programming, most programs are pretty straightforward
once you know exactly what it is you want to do. Most of them initialize data, do some processing in a loop,
and then clean everything up.
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movl $0666, %edx
int SLINUX_SYSCALL

movl %eax, ST_OUTPUT_DESCRIPTOR(%ebp)

loop_begin:

pushl ST_INPUT_DESCRIPTOR(%ebp)
pushl $record_buffer

call read_record

addl $8, %esp

#Returns the number of bytes read.
#If it isn't the same number we
#requested, then it's either an
#end-of-file, or an error, so we'’re
#quitting

cmpl $RECORD_SIZE, %eax

jne loop_end

#lncrement the age
incl record_buffer + RECORD_AGE

#Write the record out

pushl ST_OUTPUT_DESCRIPTOR(%ebp)
pushl $record_buffer

call write_record

addl $8, %esp

jmp  loop_begin
loop_end:
movl $SYS _EXIT, %eax

movl  $0, %ebx
int SLINUX_SYSCALL

You can type it in asdd-year.s . To build it, type the followin§

as add-year.s -0 add-year.o
Id add-year.o read-record.o write-record.0 -0 add-year

4. This assumes that you have already built the objectfl@s$-record.o andwrite-record.o in the
previous examples. If not, you will have to do so.
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To run the program, just type in the followihg

Jadd-year
This will add a year to every record listedtest.dat ~ and write the new records to the file
testout.dat

As you can see, writing fixed-length records is pretty simple. You only have to read in blocks of
data to a buffer, process them, and write them back out. Unfortunately, this program doesn’t write
the new ages out to the screen so you can verify your program’s effectiveness. This is because we
won't get to displaying numbers untthapter &ndChapter 10After reading those you may

want to come back and rewrite this program to display the numeric data that we are modifying.

Review

Know the Concepts

« What is a record?

+ What is the advantage of fixed-length records over variable-length records?
« How do you include constants in multiple assembly source files?

« Why might you want to split up a project into multiple source files?

- What does the instructioncl record_buffer + RECORD_AGE do? What addressing
mode is it using? How many operands doesitiee instructions have in this case? Which
parts are being handled by the assembler and which parts are being handled when the program
is run?

Use the Concepts

« Add another data member to the person structure defined in this chapter, and rewrite the
reading and writing functions and programs to take them into account. Remember to
reassemble and relink your files before running your programs.

« Create a program that uses a loop to write 30 identical records to a file.

- Create a program to find the largest age in the file and return that age as the status code of the
program.

5. This is assuming you created the file in a previous runviite-records . If not, you need to run
write-records first before running this program.
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- Create a program to find the smallest age in the file and return that age as the status code of the
program.

Going Further

« Rewrite the programs in this chapter to use command-line arguments to specify the filesnames.

+ Research thiseek system call. Rewrite thadd-year program to open the source file for
both reading and writing (use $2 for the read/write mode), and write the modified records back
to the same file they were read from.

+ Research the various error codes that can be returned by the system calls made in these
programs. Pick one to rewrite, and add code that ch&eks for error conditions, and, if one
is found, writes a message about itS0DERRand exit.

« Write a program that will add a single record to the file by reading the data from the keyboard.
Remember, you will have to make sure that the data has at least one null character at the end,
and you need to have a way for the user to indicate they are done typing. Because we have not
gotten into characters to numbers conversion, you will not be able to read the age in from the
keyboard, so you'll have to have a default age.

« Write a function calledompare-strings that will compare two strings up to 5 characters.
Then write a program that allows the user to enter 5 characters, and have the program return all
records whose first name starts with those 5 characters.
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This chapter deals with developing programs thatrabeist Robust programs are able to handle
error conditions gracefully. They are programs that do not crash no matter what the user does.
Building robust programs is essential to the practice of programming. Writing robust programs
takes discipline and work - it usually entails finding every possible problem that can occur, and
coming up with an action plan for your program to take.

Where Does the Time Go?

Programmers schedule poorly. In almost every programming project, programmers will take two,
four, or even eight times as long to develop a program or function than they originally estimated.
There are many reasons for this problem, including:

« Programmers don't always schedule time for meetings or other non-coding activities that make
up every day.

« Programmers often underestimate feedback times (how long it takes to pass change requests
and approvals back and forth) for projects.

« Programmers don't always understand the full scope of what they are producing.

« Programmers often have to estimate a schedule on a totally different kind of project than they
are used to, and thus are unable to schedule accurately.

« Programmers often underestimate the amount of time it takes to get a program fully robust.

The last item is the one we are interested in hitiakes a lot of time and effort to develop robust
programs.More so than people usually guess, including experienced programmers. Programmers
get so focused on simply solving the problem at hand that they fail to look at the possible side
issues.

In thetoupper program, we do not have any course of action if the file the user selects does not
exist. The program will go ahead and try to work anyway. It doesn’t report any error message so
the user won't even know that they typed in the name wrong. Let’s say that the destination file is
on a network drive, and the network temporarily fails. The operating system is returning a status
code to us irveeax, but we aren’t checking it. Therefore, if a failure occurs, the user is totally
unaware. This program is definitely not robust. As you can see, even in a simple program there
are a lot of things that can go wrong that a programmer must contend with.

In a large program, it gets much more problematic. There are usually many more possible error
conditions than possible successful conditions. Therefore, you should always expect to spend the
majority of your time checking status codes, writing error handlers, and performing similar tasks
to make your program robust. If it takes two weeks to develop a program, it will likely take at
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least two more to make it robust. Remember that every error message that pops up on your screen
had to be programmed in by someone.

Some Tips for Developing Robust Programs

User Testing

Testing is one of the most essential things a programmer does. If you haven't tested something,
you should assume it doesn’t work. However, testing isn’t just about making sure your program
works, it's about making sure your program doesn’t break. For example, if | have a program that
is only supposed to deal with positive numbers, you need to test what happens if the user enters a
negative number. Or a letter. Or the number zero. You must test what happens if they put spaces
before their numbers, spaces after their numbers, and other little possibilities. You need to make
sure that you handle the user’s data in a way that makes sense to the user, and that you pass on
that data in a way that makes sense to the rest of your program. When your program finds input
that doesn’t make sense, it needs to perform appropriate actions. Depending on your program,
this may include ending the program, prompting the user to re-enter values, notifying a central
error log, rolling back an operation, or ignoring it and continuing.

Not only should you test your programs, you need to have others test it as well. You should enlist
other programmers and users of your program to help you test your program. If something is a
problem for your users, even if it seems okay to you, it needs to be fixed. If the user doesn’t know
how to use your program correctly, that should be treated as a bug that needs to be fixed.

You will find that users find a lot more bugs in your program than you ever could. The reason is

that users don’t know what the computer expects. You know what kinds of data the computer
expects, and therefore are much more likely to enter data that makes sense to the computer. Users
enter data that makes sense to them. Allowing non-programmers to use your program for

testing purposes usually gives you much more accurate results as to how robust your program
truly is.

Data Testing

When designing programs, each of your functions needs to be very specific about the type and
range of data that it will or won’t accept. You then need to test these functions to make sure that
they perform to specification when handed the appropriate data. Most important is testieg
casesr edge casesCorner cases are the inputs that are most likely to cause problems or behave
unexpectedly.

When testing numeric data, there are several corner cases you always need to test:
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« The number 0O
« The number 1
« A number within the expected range
« A number outside the expected range
« The first number in the expected range
« The last number in the expected range
« The first number below the expected range
« The first number above the expected range

For example, if I have a program that is supposed to accept values between 5 and 200, | should
test 0, 1, 4, 5, 153, 200, 201, and 255 at a minimum (153 and 255 were randomly chosen inside
and outside the range, respectively). The same goes for any lists of data you have. You need to
test that your program behaves as expected for lists of O items, 1 item, massive numbers of items,
and so on. In addition, you should also test any turning points you have. For example, if you have
different code to handle people under and over age 30, for example, you would need to test it on
people of ages 29, 30, and 31 at least.

There will be some internal functions that you assume get good data because you have checked
for errors before this point. However, while in development you often need to check for errors
anyway, as your other code may have errors in it. To verify the consistency and validity of data
during development, most languages have a facility to easily check assumptions about data
correctness. In the C language there isdbs®ert macro. You can simply put in your code

assert(a > b); , and it will give an error if it reaches that code when the condition is not true.

In addition, since such a check is a waste of time after your code is stablsstre macro

allows you to turn off asserts at compile-time. This makes sure that your functions are receiving
good data without causing unnecessary slowdowns for code released to the public.

Module Testing

Not only should you test your program as a whole, you need to test the individual pieces of your
program. As you develop your program, you should test individual functions by providing it with
data you create to make sure it responds appropriately.

In order to do this effectively, you have to develop functions whose sole purpose is to call
functions for testing. These are callédvers(not to be confused with hardware drivers) . They
simply loads your function, supply it with data, and check the results. This is especially useful if
you are working on pieces of an unfinished program. Since you can't test all of the pieces
together, you can create a driver program that will test each function individually.
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Also, the code you are testing may make calls to functions not developed yet. In order to
overcome this problem, you can write a small function callstbadwhich simply returns the
values that function needs to proceed. For example, in an e-commerce application, | had a
function calleds_ready to_checkout . Before | had time to actually write the function | just
set it to return true on every call so that the functions which relied on it would have an answer.
This allowed me to test functions which relied isnready to_checkout without the

function being fully implemented.

Handling Errors Effectively

Not only is it important to know how to test, but it is also important to know what to do when an
error is detected.

Have an Error Code for Everything

Truly robust software has a unique error code for every possible contingency. By simply knowing
the error code, you should be able to find the location in your code where that error was signalled.

This is important because the error code is usually all the user has to go on when reporting errors.
Therefore, it needs to be as useful as possible.

Error codes should also be accompanied by descriptive error messages. However, only in rare
circumstances should the error message try to pradigthe error occurred. It should simply

relate what happened. Back in 1995 | worked for an Internet Service Provider. One of the web
browsers we supported tried to guess the cause for every network error, rather than just reporting
the error. If the computer wasn’t connected to the Internet and the user tried to connect to a
website, it would say that there was a problem with the Internet Service Provider, that the server
was down, and that the user should contact their Internet Service Provider to correct the problem.
Nearly a quarter of our calls were from people who had received this message, but merely needed
to connect to the Internet before trying to use their browser. As you can see, trying to diagnose
what the problem is can lead to a lot more problems than it fixes. It is better to just report error
codes and messages, and have separate resources for the user to troubleshooting the application.
A troubleshooting guide, not the program itself, is an appropriate place to list possible reasons
and courses for action for each error message.

Recovery Points

In order to simplify error handling, it is often useful to break your program apart into distinct
units, where each unit fails and is recovered as a whole. For example, you could break your
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program up so that reading the configuration file was a unit. If reading the configuration file

failed at any point (opening the file, reading the file, trying to decode the file, etc.) then the
program would simply treat it as a configuration file problem and skip togb@very poinfor

that problem. This way you greatly reduce the number of error-handling mechanism you need for
your program, because error recovery is done on a much more general level.

Note that even with recovery points, your error messages need to be specific as to what the
problem was. Recovery points are basic units for error recovery, not for error detection. Error
detection still needs to be extremely exact, and the error reports need exact error codes and
messages.

When using recovery points, you often need to include cleanup code to handle different
contingencies. For example, in our configuration file example, the recovery function would need
to include code to check and see if the configuration file was still open. Depending on where the
error occurred, the file may have been left open. The recovery function needs to check for this
condition, and any other condition that might lead to system instability, and return the program to
a consistent state.

The simplest way to handle recovery points is to wrap the whole program into a single recovery
point. You would just have a simple error-reporting function that you can call with an error code
and a message. The function would print them and and simply exit the program. This is not
usually the best solution for real-world situations, but it is a good fall-back, last resort mechanism.

Making Our Program More Robust

This section will go through making theld-year.s  program fromChapter & little more
robust.

Since this is a pretty simple program, we will limit ourselves to a single recovery point that
covers the whole program. The only thing we will do to recover is to print the error and exit. The
code to do that is pretty simple:

.include "linux.s"

.equ ST_ERROR_CODE, 8
.equ ST_ERROR_MSG, 12
.globl error_exit

type error_exit, @function
error_exit:

pushl %ebp

movl  %esp, %ebp

#Write out error code
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movl ST_ERROR_CODE(%ebp), %ecx
pushl %ecx

call count _chars

popl %ecx

movl %eax, %edx

movl $STDERR, %ebx

movl $SYS WRITE, %eax

int $LINUX_SYSCALL

#Write out error message

movl ST_ERROR_MSG(%ebp), %ecx
pushl %ecx

call count _chars

popl %ecx

movl  %eax, %edx

movl $STDERR, %ebx

movl $SYS_WRITE, %eax

int  $LINUX_SYSCALL

pushl $STDERR
call write_newline

#Exit with status 1

movl $SYS_EXIT, %eax
movl $1, %ebx

int $LINUX_SYSCALL

Enter it in a file calleckrror-exit.s . To call it, you just need to push the address of an error
message, and then an error code onto the stack, and call the function.

Now let’s look for potential error spots in oadd-year program. First of all, we don’t check to
see if either of oubpen system calls actually complete properly. Linux returns its status code in
%eax, SO we need to check and see if there is an error.

#0Open file for reading

movl $SYS_OPEN, %eax
movl  $input_file_name, %ebx
movl $0, %ecx

movl $0666, %edx

int  $LINUX_SYSCALL

movl %eax, INPUT_DESCRIPTOR(%ebp)

#This will test and see if %eax is
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#negative. If it is not negative, it
#will jump to continue_processing.
#Otherwise it will handle the error
#condition that the negative number
#represents.

cmpl  $0, %eax

jl continue_processing

#Send the error

.section .data
no_open_file_code:

.ascii "0001: \0"
no_open_file_msg:

.ascii "Can’'t Open Input File\0"

.section .text

pushl $no_open_file_msg
pushl $no_open_file_code
call error_exit

continue_processing:
#Rest of program

Chapter 7. Developing Robust Programs

So, after calling the system call, we check and see if we have an error by checking to see if the
result of the system call is less than zero. If so, we call our error reporting and exit routine.

After every system call, function call, or instruction which can have erroneous results you should

add error checking and handling code.

To assemble and link the files, do:

as add-year.s -0 add-year.o
as error-exit.s -0 error-exit.o

Id add-year.o write-newline.o error-exit.o read-record.o write-record.o count-

chars.o -0 add-year

Now try to run it without the necessary files. It now exits cleanly and gracefully!
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Review

Know the Concepts

« What are the reasons programmer’s have trouble with scheduling?

« Find your favorite program, and try to use it in a completely wrong manner. Open up files of
the wrong type, choose invalid options, close windows that are supposed to be open, etc. Count
how many different error scenarios they had to account for.

« What are corner cases? Can you list examples of numeric corner cases?

« Why is user testing so important?

« What are stubs and drivers used for? What'’s the difference between the two?
« What are recovery points used for?

- How many different error codes should a program have?

Use the Concepts

« Gothrough theadd-year.s  program and add error-checking code after every system call.
- Find one other program we have done so far, and add error-checking to that program.

« Add a recovery mechanism fadd-year.s  that allows it to read from STDIN if it cannot
open the standard file.

Going Further

« What, if anything, should you do if your error-reporting function fails? Why?
« Try to find bugs in at least one open-source program. File a bug report for it.

« Try to fix the bug you found in the previous exercise.
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By now you should realize that the computer has to do a lot of work even for simple tasks.
Because of that, you have to do a lot of work to write the code for a computer to even do simple
tasks. In addition, programming tasks are usually not very simple. Therefore, we neeed a way to
make this process easier on ourselves. There are several ways to do this, including:

« Write code in a high-level language instead of assembly language
« Have lots of pre-written code that you can cut and paste into your own programs
« Have a set of functions on the system that are shared among any program that wishes to use it

All three of these are usually used to some degree in any given project. The first option will be
explored further irChapter 11 The second option is useful but it suffers from some drawbacks,
including:

« Code that is copied often has to be majorly modified to fit the surrounding code.
- Every program containing the copied code has the same code in it, thus wasting a lot of space.
- Ifa bug is found in any of the copied code it has to be fixed in every application program.

Therefore, the second option is usually used sparingly. It is usually only used in cases where you
copy and paste skeleton code for a specific type of task, and add in your program-specific details.
The third option is the one that is used the most often. The third option includes having a central
repository of shared code. Then, instead of each program wasting space storing the same copies
of functions, they can simply point to the shared libraries which contain the functions they need.

If a bug is found in one of these functions, it only has to be fixed within the single function

library file, and all applications which use it are automatically updated. The main drawback with
this approach is that it creates some dependency problems, including:

- If multiple applications are all using the shared file, how do we know when it is safe to delete
the file? For example, if three applications are sharing a file of functions and 2 of the programs
are deleted, how does the system know that there still exists an application that uses that code,
and therefore it shouldn’t be deleted?

« Some programs inadvertantly rely on bugs within shared functions. Therefore, if upgrading the
shared program fixes a bug that a program depended on, it could cause that application to cease
functioning.

These problems are what lead to what is known as "DLL hell". However, it is generally assumed
that the advantages outweigh the disadvantages.
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In programming, these shared code files are referred sba®d libraries shared objects
dynamic-link libraries DLLs, or .so files We will refer to them ashared libraries

Using a Shared Library

The program we will examine here is simple - it writes the charatighs world  to the
screen and exits. The regular programwjoworld-nolib.s , looks like this:

#PURPOSE: This program writes the message "hello world" and
# exits
#

.include "linux.s"

.section .data

helloworld:
.ascii "hello world\n"
helloworld_end:

.equ helloworld_len, helloworld_end - helloworld

.section .text

.globl _start

_start:

movl $STDOUT, %ebx
movl $helloworld, %ecx
movl $helloworld len, %edx
movl $SYS WRITE, %eax
int SLINUX_SYSCALL

movl $0, %ebx

movl $SYS_EXIT, %eax
int SLINUX_SYSCALL

That’s not too long. However, take a look at how shwitoworld-lib is which uses a library:

#PURPOSE: This program writes the message "hello world" and
# exits
#
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.section .data

helloworld:
.ascii "hello world\n\0"

.section .text
.globl _start
_start:

pushl $helloworld
call printf

pushl $0
call exit

It's even shorter!

Now, building programs which use shared libraries is a little different than normal. You can build
the first program normally by doing this:

as helloworld-nolib.s -0 helloworld-nolib.o
Id helloworld-nolib.o -o helloworld-nolib

However, in order to build the second program, you have to do this:

as helloworld-lib.s -0 helloworld-lib.o
Id -dynamic-linker /lib/ld-linux.s0.2 \
-0 helloworld-lib helloworld-lib.o -lc

Remember, the backslash in the first line simply means that the command continues on the next
line. The optiondynamic-linker /lib/Id-linux.so.2 allows our program to be linked to
libraries. This builds the executable so that before executing, the operating system will load the
programvlib/ld-linux.so.2 to load in external libraries and link them with the program.

This program is known as@namic linker

The-Ic option says to link to the library, namedibc.so  on GNU/Linux systems. Given a
library nameg in this case (usually library names are longer than a single letter), the GNU/Linux
linker prepends the string to the beginning of the library name and appersds to the end of

it to form the library’s filename. This library contains many functions to automate all types of
tasks. The two we are using gréntf , which prints strings, aneit , which exits the program.

Notice that the symbolsrintt  andexit are simply referred to by name within the program. In
previous chapters, the linker would resolve all of the names to physical memory addresses, and
the names would be thrown away. When using dynamic linking, the name itself resides within the
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executable, and is resolved by the dynamic linker when it is run. When the program is run by the
user, the dynamic linker loads the shared libraries listed in our link statement, and then finds all

of the function and variable names that were named by our program but not found at link time,
and matches them up with corresponding entries in the shared libraries it loads. It then replaces
all of the names with the addresses which they are loaded at. This sounds time-consuming. Itis to
a small degree, but it only happens once - at program startup time.

How Shared Libraries Work

In our first programs, all of the code was contained within the source file. Such programs are
calledstatically-linked executablebecause they contained all of the necessary functionality for
the program that wasn’t handled by the kernel. In the programs we wr@kapter 6we used

both our main program file and files containing routines used by multiple programs. In these
cases, we combined all of the code together using the linker at link-time, so it was still
statically-linked. However, in theelloworld-lib program, we started using shared libraries.
When you use shared libraries, your program is ttmamically-linkedwhich means that not

all of the code needed to run the program is actually contained within the program file itself, but
in external libraries.

When we put thelc on the command to link thieelloworld ~ program, it told the linker to use
thec library (libc.so ) to look up any symbols that weren’t already definetietioworld.o

However, it doesn’t actually add any code to our program, it just notes in the program where to
look. When thehelloworld ~ program begins, the fildib/Id-linux.so.2 is loaded first.

This is the dynamic linker. This looks at obglloworld ~ program and sees that it needs the
library to run. So, it searches for afile callist.so  in the standard places (listed in
letc/ld.so.conf and in the contents of theb_LIBRARY_PATHenvironment variable), then
looks in it for all the needed symbolprintf  andexit in this case), and then loads the library
into the program’s virtual memory. Finally, it replaces all instancagiaff  in the program

with the actual location gfrintf  in the library.

Run the following command:

Idd ./helloworld-nolib

It should report backot a dynamic executable . This is just like we said -
helloworld-nolib is a statically-linked executable. However, try this:

Idd ./helloworld-lib

It will report back something like

libc.s0.6 => /lib/libc.s0.6 (0x4001d000)
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Nlib/ld-linux.s0.2 => /lib/ld-linux.so0.2 (0x400000000)

The numbers in parenthesis may be different on your system. This means that the program
helloworld is linked tolibc.so.6 (the.6 is the version number), which is found at

/lib/libc.s0.6 , and/lib/ld-linux.so.2 is found at/lib/Id-linux.so.2 . These

libraries have to be loaded before the program can be run. If you are interested, kith the

program on various programs that are on your Linux distribution, and see what libraries they rely
on.

Finding Information about Libraries

Okay, so now that you know about libraries, the question is, how do you find out what libraries
you have on your system and what they do? Well, let’s skip that question for a minute and ask
another question: How do programmers describe functions to each other in their documentation?
Let’s take a look at the functioprintf . It’s calling interface (usually referred to agpeototypg

looks like this:

int printf(char *string, ...);

In Linux, functions are described in the C programming language. In fact, most Linux programs
are written in C. That is why most documentation and binary compatibility is defined using the C
language. The interface to tpeintf  function above is described using the C programming
language.

This definition means that there is a functigintf . The things inside the parenthesis are the
function’s parameters or arguments. The first parameter hehars*string . This means

there is a parameter namsting  (the name isn’t important, except to use for talking about it),
which has a typehar * .char means that it wants a single-byte character. Tladter it means
that it doesn't actually want a character as an argument, but instead it wants the address of a
character or sequence of characters. If you look back ateloworld program , you will

notice that the function call looked like this:

pushl $hello
call printf

So, we pushed the address of tetlo  string, rather than the actual characters. You might
notice that we didn’t push the length of the string. The way piiatf ~ found the end of the
string was because we ended it with a null charaégey. (Many functions work that way,
especially C language functions. Tine before the function definition tell what type of value
the function will return ireeax when it returnsprintf ~ will return anint when it's through.
Now, after thechar *string , we have a series of periods, . This means that it can take an
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indefinite number of additional arguments after the string. Most functions can only take a
specified number of argumengsintf , however, can take many. It will look into ths&ing
parameter, and everywhere it sees the charawigis will look for another string from the stack
to insert, and everywhere it se#slit will look for a number from the stack to insert. This is best
described using an example:

#PURPOSE: This program is to demonstrate how to call printf
#

.section .data
#This string is called the format string. It's the first

#parameter, and printf uses it to find out how many parameters
#it was given, and what kind they are.

firststring:
.ascii "Hello! %s is a %s who loves the number %d\n\0"
name;:

.ascii "Jonathan\0"

personstring:

.ascii "person\0”

#This could also have been an .equ, but we decided to give it
#a real memory location just for kicks

numberloved:

Jdong 3

.section .text

.globl _start
_start:

#note that the parameters are passed in the
#reverse order that they are listed in the
#function’s prototype.

pushl numberloved #This is the %d
pushl $personstring #This is the second %s
pushl $name #This is the first %s
pushl $firststring  #This is the format string

#in the prototype

call printf

pushl $0
call exit

Type it in with the filenamerintf-example.s , and then do the following commands:
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as printf-example.s -0 printf-example.o
Id printf-example.o -o printf-example -lc \
-dynamic-linker /lib/ld-linux.so.2

Then run the program withiprintf-example , and it should say this:

Hello! Jonathan is a person who loves the number 3

Now, if you look at the code, you'll see that we actually push the format string last, even though
it's the first parameter listed. You always push a functions parameters in reversé twdanay

be wondering how therintf  function knows how many parameters there are. Well, it searches
through your string, and counts how mawys and%ss it finds, and then grabs that number of
parameters from the stack. If the parameter matchieg d treats it as a number, and if it

matches @sos it treats it as a pointer to a null-terminated stripgntf  has many more features
than this, but these are the most-used ones. So, as you caniee, can make output a lot

easier, but it also has a lot of overhead, because it has to count the number of characters in the
string, look through it for all of the control characters it needs to replace, pull them off the stack,
convert them to a suitable representation (numbers have to be converted to strings, etc), and stick
them all together appropriately.

We've seen how to use the C programming language prototypes to call library functions. To use
them effectively, however, you need to know several more of the possible data types for reading
functions. Here are the main ones:

int
Anint is an integer number (4 bytes on x86 processor).

long

A long is also an integer number (4 bytes on an x86 processor).

long long

A long long is an integer number that’s larger thalbag (8 bytes on an x86 processor).

short

A short is an integer number that’s shorter thariran (2 bytes on an x86 processor).

1. The reason that parameters are pushed in the reverse order is because of functions which take a variable
number of parameters likgintf . The parameters pushed in last will be in a known position relative to the

top of the stack. The program can then use these parameters to determine where on the stack the additional
arguments are, and what type they are. For exarmpglef  uses the format string to determine how many

other parameters are being sent. If we pushed the known arguments first, you wouldn’t be able to tell where
they were on the stack.
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char

float

A char is a single-byte integer number. This is mostly used for storing character data, since
ASCII strings usually are represented with one byte per character.

A float is a floating-point number (4 bytes on an x86 processor). Floating-point numbers
will be explained in more depth ithe Section calleéloating-point Numbere Chapter 10

double

A double is a floating-point number that is larger than a float (8 bytes on an x86 processor).

unsigned

unsigned is a modifier used for any of the above types which keeps them from being used
as signed quantities. The difference between signed and unsigned numbers will be discussed
in Chapter 10

An asterisk t) is used to denote that the data isn’t an actual value, but instead is a pointer to
a location holding the given value (4 bytes on an x86 processor). So, let's say in memory
locationmy_location  you have the number 20 stored. If the prototype said to pass an

you would use direct addressing mode angdshl my_location . However, if the

prototype said to pass am * , you would dopushl $my_location - an immediate

mode push of the address that the value resides in. In addition to indicating the address of a
single value, pointers can also be used to pass a sequence of consecutive locations, starting
with the one pointed to by the given value. This is called an array.

struct
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A struct is a set of data items that have been put together under a name. For example you
could declare:

struct teststruct {

int a;

char *b;
h
and any time you ran intstruct teststruct you would know that it is actually two
words right next to each other, the first being an integer, and the second a pointer to a
character or group of characters. You never see structs passed as arguments to functions.
Instead, you usually see pointers to structs passed as arguments. This is because passing
structs to functions is fairly complicated, since they can take up so many storage locations.
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typedef

A typedef basically allows you to rename a type. For example, | catyjgsdef int
myowntype; in a C program, and any time | typed/owntype , it would be just as if | typed
int . This can get kind of annoying, because you have to look up what all of the typedefs
and structs in a function prototype really mean. Howewyggdef s are useful for giving
types more meaningful and descriptive names.

Compatibility Note: The listed sizes are for intel-compatible (x86) machines. Other
machines will have different sizes. Also, even when parameters shorter than a word are
passed to functions, they are passed as longs on the stack.

That's how to read function documentation. Now, let’s get back to the question of how to find out
about libraries. Most of your system libraries ardusr/lib or/lib . If you want to just see

what symbols they define, just rebjdump -R FILENAME whereFILENAMEIs the full path to

the library. The output of that isn’t too helpful, though, for finding an interface that you might

need. Usually, you have to know what library you want at the beginning, and then just read the
documentation. Most libraries have manuals or man pages for their functions. The web is the best
source of documentation for libraries. Most libraries from the GNU project also have info pages
on them, which are a little more thorough than man pages.

Useful Functions

Several useful functions you will want to be aware of fromd¢H#rary include:

« size_t strlen (const char *s) calculates the size of null-terminated strings.
« int strcmp (const char *s1, const char *s2) compares two strings alphabetically.
« char * strdup (const char *s) takes the pointer to a string, and creates a new copy in

a new location, and returns the new location.

« FILE * fopen (const char *filename, const char *opentype) opens a
managed, buffered file (allows easier reading and writing than using file descriptors difectly).

« int fclose (FILE *stream) closes a file opened witlopen .

2. stdin , stdout , andstderr (all lower case) can be used in these programs to refer to the files of their
corresponding file descriptors.

3. FILE is a struct. You don't need to know it's contents to use it. You only have to store the pointer and
pass it to the relevant other functions.
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« char * fgets (char *s, int count, FILE *stream) fetches a line of characters
into strings.

« int fputs (const char *s, FILE *stream) writes a string to the given open file.

« int fprintf (FILE *stream, const char *template, ...) is just likeprintf

but it uses an open file rather than defaulting to using standard output.

You can find the complete manual on this library by going to
http://www.gnu.org/software/libc/manual/

Building a Shared Library

Let's say that we wanted to take all of our shared code f@mapter Gand build it into a shared
library to use in our programs. The first thing we would do is assemble them like normal:

as write-record.s -0 write-record.o
as read-record.s -o read-record.o

Now, instead of linking them into a program, we want to link them into a shared library. This
changes our linker command to this:

Id -shared write-record.o read-record.o -o librecord.so

This links both of these files together into a shared library cadibeektord.so . This file can
now be used for multiple programs. If we need to update the functions contained within it, we can
just update this one file and not have to worry about which programs use it.

Let’s look at how we would link against this library. To link theite-records program, we
would do the following:

as write-records.s -0 write-records
Id -L . -dynamic-linker /lib/ld-linux.s0.2 \
-0 write-records -lrecord write-records.o

In this command;L . told the linker to look for libraries in the current directory (it usually only
searchedib directory,/usr/lib directory, and a few others). As we've seen, the option
-dynamic-linker /lib/ld-linux.so.2 specified the dynamic linker. The option

-Irecord  tells the linker to search for functions in the file naniéckcord.so

Now thewrite-records program is built, but it will not run. If we try it, we will get an error
like the following:

Jwrite-records: error while loading shared libraries:
librecord.so: cannot open shared object file: No such
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file or directory
This is because, by default, the dynamic linker only seargihes, /usr/lib  , and whatever

directories are listed iretc/Id.so.conf for libraries. In order to run the program, you either
need to move the library to one of these directories, or execute the following command:

LD_LIBRARY_PATH=.
export LD_LIBRARY_PATH

Alternatively, if that gives you an error, do this instead:

setenv LD_LIBRARY_PATH .

Now, you can rurwrite-records normally by typing./write-records . Setting
LD_LIBRARY_PATHItells the linker to add whatever paths you give it to the library search path for
dynamic libraries

For further information about dynamic linking, see the following sources on the Internet:

« The man page fdd.so contains a lot of information about how the Linux dynamic linker
works.

« http://www.benyossef.com/presentations/dlink/ is a great presentation on dynamic linking in
Linux.

« http://www.linuxjournal.com/article.php?sid=1059 and
http://www.linuxjournal.com/article.php?sid=1060 provide a good introduction to the ELF file
format, with more detail available at http://www.cs.ucdavis.edu/~haungs/paper/node10.html

« http://lwww.iecc.com/linker/linker10.html contains a great description of how dynamic linking
works with ELF files.

Review

Know the Concepts

« What are the advantages and disadvantages of shared libraries?
+ Given a library named "foo’, what would the library’s filename be?

- What does thé&dd command do?
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Let’'s say we had the filel®o.o andbar.o , and you wanted to link them together, and
dynamically link them to the library 'kramer’. What would the linking command be to
generate the final executable?

What istypedeffor?
What arestructs for?

What is the difference between a data element of tgpandint *? How would you access
them differently in your program?

If you had a object file calletbo.o , what would be the command to create a shared library
called 'bar?

What is the purpose of LD_LIBRARY_PATH?

Use the Concepts

Rewrite one or more of the programs from the previous chapters to print their results to the
screen usingrintf  rather than returning the result as the exit status code. Also, make the exit
status code be O.

Use thefactorial function you developed ithe Section calle®Recursive Functions
Chapter 40 make a shared library. Then re-write the main program so that it links with the
library dynamically.

Rewrite the program above so that it also links with the ’c’ library. Use the 'c’ library’s
printf  function to display the result of thactorial call.

Rewrite thetoupper program so that it uses thedibrary functions for files rather than system
calls.

Going Further

Make a list of all the environment variables used by the GNU/Linux dynamic linker.

Research the different types of executable file formats in use today and in the history of
computing. Tell the strengths and weaknesses of each.

What kinds of programming are you interested in (graphics, databbases, science, etc.)? Find a
library for working in that area, and write a program that makes some basic use of that library.
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« Research the use bb_PRELOADWhat is it used for? Try building a shared library that
contained thexit function, and have it write a message to STDERR before exitting. Use
LD_PRELOALaNd run various programs with it. What are the results?

107



Chapter 8. Sharing Functions with Code Libraries

108



Chapter 9. Intermediate Memory Topics

How a Computer Views Memory

Let’s review how memory within a computer works. You may also want to re-Gepter 2

A computer looks at memory as a long sequence of numbered storage locations. A sequence of
millions of numbered storage locations. Everything is stored in these locations. Your programs

are stored there, your data is stored there, everything. Each storage location looks like every other
one. The locations holding your program are just like the ones holding your data. In fact, the
computer has no idea which are which, except that the executable file tells it where to start
executing.

These storage locations are called bytes. The computer can combine up to four of them together
into a single word. Normally numeric data is operated on a word at a time. As we mentioned,
instructions are also stored in this same memory. Each instruction is a different length. Most
instructions take up one or two storage locations for the instruction itself, and then storage
locations for the instruction’s arguments. For example, the instruction

movl data_items(,%edi,4), %ebx

takes up 7 storage locations. The first two hold the instruction, the third one tells which registers
to use, and the next four hold the storage locatiodadd_items . In memory, instructions look

just like all the other numbers, and the instructions themselves can be moved into and out of
registers just like numbers, because that’s what they are.

This chapter is focused on the details of computer memory. To get started let’s review some basic
terms that we will be using in this chapter:

Byte
This is the size of a storage location. On x86 processors, a byte can hold numbers between 0
and 255.

Word
This is the size of a normal register. On x86 processors, a word is four bytes long. Most
computer operations handle a word at a time.

Address

An address is a number that refers to a byte in memory. For example, the first byte on a
computer has an address of 0, the second has an address of 1, arldss@onpiece of data

1. You actually never use addresses this low, but it works for discussion.
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on the computer not in a register has an address. The address of data which spans several
bytes is the same as the address of its first byte.

Normally, we don't ever type the numeric address of anything, but we let the assembler do it
for us. When we use labels in code, the symbol used in the label will be equivalent to the
address it is labelling. The assembler will then replace that symbol with its address wherever
you use it in your program. For example, say you have the following code:

.section .data
my_data:
dong 2, 3, 4

Now, any time in the program thaty data is used, it will be replaced by the address of the
first value of thelong directive.

Pointer

A pointer is a register or memory word whose value is an address. In our programs we use
%ebpas a pointer to the current stack frame. All base pointer addressing involves pointers.
Programming uses a lot of pointers, so it's an important concept to grasp.

The Memory Layout of a Linux Program

When you program is loaded into memory, eagdttion  is loaded into its own region of
memory. All of the code and data declared in each section is brought together, even if they were
separated in your source code.

The actual instructions (theext  section) are loaded at the address 0x08048000 (numbers
starting withOx are in hexadecimal, which will be discusseddhapter 1) The.data section
is loaded immediately after that, followed by tlhas section.

The last byte that can be addressed on Linux is location Oxbfffffff. Linux starts the stack here and
grows it downward toward the other sections. Between them is a huge gap. The initial layout of
the stack is as follows: At the bottom of the stack (the bottom of the stack is the top address of
memory - se€hapter 4, there is a word of memory that is zero. After that comes the
null-terminated name of the program using ASCII characters. After the program name comes the
program’s environment variables (these are not important to us in this book). Then come the
program’s command-line arguments. These are the values that the user typed in on the command
line to run this program. When we rws, for example, we give it several argumentss-

sourcefile.s , -0 , andobijectfile.o . After these, we have the number of arguments that

were used. When the program begins, this is where the stack pétatsys, is pointing. Further

pushes on the stack mo¥eesp down in memory. For example, the instruction
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pushl %eax
is equivalent to

movl %eax, (%esp)
subl $4, %esp

Likewise, the instruction
popl %eax
is the same as

movl (%esp), %eax
addl $4, %esp

Your program’s data region starts at the bottom of memory and goes up. The stack starts at the
top of memory, and moves downward with each push. This middle part between the stack and
your program’s data sections is inaccessible memory - you are not allowed to access it until you
tell the kernel that you need3tf you try, you will get an error (the error message is usually
"segmentation fault"). The same will happen if you try to access data before the beginning of
your program, 0x08048000. The last accessible memory address to your program is called the
system breakalso called theurrent breakor just thebreak).

2. The stack can access it as it grows downward, and you can access the stack regionsodespigh
However, your program’s data section doesn’t grow that way. The way to grow that will be explained shortly.
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Oxbfffffff

Environment
Variables

Arg #2

Arg #1
Program name
# of arguments %besp

Unmapped Memory

Break

Program Code
and Data

0x08048000

Memory Layout of a Linux Program at Startup

Every Memory Address is a Lie

So, why does the computer not allow you to access memory in the break area? To answer this
guestion, we will have to delve into the depths of how your computer really handles memory.

You may have wondered, since every program gets loaded into the same place in memory, don't
they step on each other, or overwrite each other? It would seem so. However, as a program writer,
you only accessirtual memory

Physical memoryefers to the actual RAM chips inside your computer and what they contain. It's
usually between 16 and 512 Megabytes on modern computers. If we talk aploysiaal

memory addressve are talking about where exactly on these chips a piece of memory is located.
Virtual memory is the wayour programthinks about memory. Before loading your program,

Linux finds an empty physical memory space large enough to fit your program, and then tells the
processor to pretend that this memory is actually at the address 0x0804800 to load your program
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into. Confused yet? Let me explain further.

Each program gets its own sandbox to play in. Every program running on your computer thinks
that it was loaded at memory address 0x0804800, and that it's stack starts at Oxbffffff. When

Linux loads a program, it finds a section of unused memory, and then tells the processor to use
that section of memory as the address 0x0804800 for this program. The address that a program
believes it uses is called the virtual address, while the actual address on the chips that it refers to
is called the physical address. The process of assigning virtual addresses to physical addresses is
calledmapping

Earlier we talked about the inaccessible memory betweermske and the stack, but we didn’t

talk about why it was there. The reason is that this region of virtual memory addresses hasn'’t
been mapped onto physical memory addresses. The mapping process takes up considerable time
and space, so if every possible virtual address of every possible program were mapped, you
would not have enough physical memory to even run one program. So, the break is the beginning
of the area that contains unmapped memory. With the stack, however, Linux will automatically
map in memory that is accessed from stack pushes.

Of course, this is a very simplified view of virtual memory. The full concept is much more
advanced. For example, Virtual memory can be mapped to more than just physical memory; it
can be mapped to disk as well. Swap partitions on Linux allow Linux’s virtual memory system to
map memory not only to physical RAM, but also to disk blocks as well. For example, let’'s say
you only have 16 Megabytes of physical memory. Let’s also say that 8 Megabytes are being used
by Linux and some basic applications, and you want to run a program that requires 20 Megabytes
of memory. Can you? The answer is yes, but only if you have set up a swap partition. What
happens is that after all of your remaining 8 Megabytes of physical memory have been mapped
into virtual memory, Linux starts mapping parts of your application’s virtual memory to disk
blocks. So, if you access a "memory" location in your program, that location may not actually be
in memory at all, but on disk. As the programmer you won’t know the difference, though,

because it is all handled behind the scenes by Linux.

Now, x86 processors cannot run instructions directly from disk, nor can they access data directly
from disk. This requires the help of the operating system. When you try to access memory that is
mapped to disk, the processor notices that it can’t service your memory request directly. It then
asks Linux to step in. Linux notices that the memory is actually on disk. Therefore, it moves

some data that is currently in memory onto disk to make room, and then moves the memory

being accessed from the disk back into physical memory. It then adjusts the processor’s
virtual-to-physical memory lookup tables so that it can find the memory in the new location.

Finally, Linux returns control to the program and restarts it at the instruction which was trying to
access the data in the first place. This instruction can now be completed successfully, because the
memory is now in physical RAM.

3. Note that not only can Linux have a virtual address map to a different physical address, it can also move
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Here is an overview of the way memory accesses are handled under Linux:

« The program tries to load memory from a virtual address.

« The processor, using tables supplied by Linux, transforms the virtual memory address into a
physical memory address on the fly.

- If the processor does not have a physical address listed for the memory address, it sends a
request to Linux to load it.

« Linux looks at the address. If it is mapped to a disk location, it continues on to the next step.
Otherwise, it terminates the program with a segmentation fault error.

« If there is not enough room to load the memory from disk, Linux will move another part of the
program or another program onto disk to make room.

« Linux then moves the data into a free physical memory address.

« Linux updates the processor’s virtual-to-physical memory mapping tables to reflect the
changes.

« Linux restores control to the program, causing it to re-issue the instruction which caused this
process to happen.

« The processor can now handle the instruction using the newly-loaded memory and translation
tables.

It's a lot of work for the operating system, but it gives the user and the programmer great
flexibility when it comes to memory management.

Now, in order to make the process more efficient, memory is separated out into groups called
pages When running Linux on x86 processors, a page is 4096 bytes of memory. All of the
memory mappings are done a page at a time. Physical memory assignment, swapping, mapping,
etc. are all done to memory pages instead of individual memory addresses. What this means to
you as a programmer is that whenever you are programming, you should try to keep most
memory accesses within the same basic range of memory, so you will only need a page or two of
memory at a time. Otherwise, Linux may have to keep moving pages on and off of disk to satisfy
your memory needs. Disk access is slow, so this can really slow down your program.

Sometimes so many programs can be loaded that there is hardly enough physical memory for
them. They wind up spending more time just swapping memory on and off of disk than they do
actually processing it. This leads to a condition caliacp deattwhich leads to your system

being unresponsive and unproductive. It's usually usually recoverable if you start terminating
your memory-hungry programs, but it's a pain.

those mappings around as needed.
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Resident Set Size: The amount of memory that your program currently has in physical
memory is called it's resident set size, and can be viewed by using the program top . The
resident set size is listed under the column labelled "RSS".

Getting More Memory

We now know that Linux maps all of our virtual memory into physical memory or swap. If you

try to access a piece of virtual memory that hasn’t been mapped yet, it triggers an error known as
a segmentation fault, which will terminate your program. The program break point, if you
remember, is the last valid address you can use. Now, this is all great if you know beforehand
how much storage you will need. You can just add all the memory you need todgsair or

.bss sections, and it will all be there. However, let's say you don’t know how much memory you
will need. For example, with a text editor, you don’t know how long the person'’s file will be. You
could try to find a maximum file size, and just tell the user that they can’t go beyond that, but
that’s a waste if the file is small. Therefore Linux has a facility to move the break point to
accomodate an application’s memory needs.

If you need more memory, you can just tell Linux where you want the new break point to be, and
Linux will map all the memory you need between the current and new break point, and then
move the break point to the spot you specify. That memory is now available for your program to
use. The way we tell Linux to move the break point is throughbilke system call. Thérk

system call is call number 45 (which will be #eax). %ebx should be loaded with the requested
breakpoint. Then you cailht $0x80 to signal Linux to do its work. After mapping in your
memory, Linux will return the new break point #eax. The new break point might actually be
larger than what you asked for, because Linux rounds up to the nearest page. If there is not
enough physical memory or swap to fulfill your request, Linux will return a zepodax. Also, if

you callbrk with a zero in%ebyx, it will simply return the last usable memory address.

The problem with this method is keeping track of the memory we request. Let’s say | need to
move the break to have room to load a file, and then need to move a break again to load another
file. Let’'s say | then get rid of the first file. You now have a giant gap in memory that's mapped,
but that you aren’t using. If you continue to move the break in this way for each file you load, you
can easily run out of memory. So, what is neededriseanory manager

A memory manager is a set of routines that takes care of the dirty work of getting your program
memory for you. Most memory managers have two basic functiafiscate  and

deallocate  .* Whenever you need a certain amount of memory, you can simplyiitetate

how much you need, and it will give you back an address to the memory. When you're done with

4. The function names usually aremltocate  anddeallocate , but the functionality will be the same.
In the C programming language, for example, they are nanzdidc andfree .
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it, you tell deallocate  that you are through with itllocate  will then be able to reuse the
memory. This pattern of memory management is callgagamic memory allocatio his

minimizes the number of "holes" in your memory, making sure that you are making the best use
of it you can. The pool of memory used by memory managers is commonly referrethi® as

heap

The way memory managers work is that they keep track of where the system break is, and where
the memory that you have allocated is. They mark each block of memory in the heap as being
used or unused. When you request memory, the memory manager checks to see if there are any
unused blocks of the appropriate size. If not, it callskdhe system call to request more memory.
When you free memory it marks the block as unused so that future requests can retrieve it. In the
next section we will look at building our own memory manager.

A Simple Memory Manager

Here | will show you a simple memory manager. It is very primitive but it shows the principles
quite well. As usual, | will give you the program first for you to look through. Afterwards will
follow an in-depth explanation. It looks long, but it is mostly comments.

#PURPOSE: Program to manage memory usage - allocates
# and deallocates memory as requested

#

#NOTES:  The programs using these routines will ask
for a certain size of memory. We actually
use more than that size, but we put it

at the beginning, before the pointer

we hand back. We add a size field and

an AVAILABLE/UNAVAILABLE marker. So, the
memory looks like this

HHAHH R R R R R R R R
#Available Marker#Size of memory#Actual memory locations#
HUH R R R R B R R
A--Returned pointer
points here
The pointer we return only points to the actual
locations requested to make it easier for the
calling program. It also allows us to change our
structure without the calling program having to
change at all.

HHHFHHFHHHFHHHHHHHHFH

.section .data
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#HHHH#HAGLOBAL VARIABLESH#H#####H#H#

#This points to the beginning of the memory we are managing
heap_begin:
dong 0O

#This points to one location past the memory we are managing
current_break:
dong 0O

##HH#STRUCTURE INFORMATION####

#size of space for memory region header
.equ HEADER_SIZE, 8

#Location of the "available" flag in the header
.equ HDR_AVAIL OFFSET, 0

#Location of the size field in the header

.equ HDR_SIZE OFFSET, 4

HHH#HHH A CONSTANT SHEHH I HHE

.equ UNAVAILABLE, 0 #This is the number we will use to mark
#ispace that has been given out

.equ AVAILABLE, 1  #This is the number we will use to mark
#space that has been returned, and is
#available for giving

.equ SYS_BRK, 45 #system call number for the break
#system call

.equ LINUX_SYSCALL, 0x80 #make system calls easier to read

.section .text

HHHHHHHHHHEUNCTION SHHHHHHHHHHHHH

##allocate_init##
#PURPOSE: call this function to initialize the

# functions (specifically, this sets heap_begin and
# current_break). This has no parameters and no
# return value.
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.globl allocate_init

type allocate_init,@function

allocate_init:

pushl %ebp #standard function stuff
movl  %esp, %ebp

#If the brk system call is called with 0 in %ebx, it

#returns the last valid usable address

movl $SYS_BRK, %eax #find out where the break is
movl $0, %ebx

int  $LINUX_SYSCALL

incl %eax #%eax now has the last valid
#address, and we want the
#memory location after that

movl %eax, current break #store the current break

movl %eax, heap_begin #store the current break as our
#irst address. This will cause
#the allocate function to get
#more memory from Linux the
#first time it is run

movl  %ebp, %esp #exit the function
popl %ebp
ret

#HAHHEND OF FUNCTION####H#HH#

##allocate#t#
#PURPOSE: This function is used to grab a section of

# memory. It checks to see if there are any
# free blocks, and, if not, it asks Linux

# for a new one.

#

#PARAMETERS: This function has one parameter - the size
# of the memory block we want to allocate
#

#RETURN VALUE:

# This function returns the address of the

# allocated memory in %eax. If there is no
# memory available, it will return 0 in %eax
#
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#i###H#PROCESSIN GHitHHHHH#H
#Variables used:

%ebx - current break position
%edx - size of current memory region

#

#  %ecx - hold the size of the requested memory
# (first/only parameter)

#  %eax - current memory region being examined
#

#

#We scan through each memory region starting with
#heap_begin. We look at the size of each one, and if
#it has been allocated. |If it's big enough for the
#requested size, and its available, it grabs that one.
#If it does not find a region large enough, it asks
#Linux for more memory. In that case, it moves
#current_break up

.globl allocate

type allocate,@function

.equ ST_MEM_SIZE, 8 #stack position of the memory size
#to allocate

allocate:

pushl %ebp #standard function stuff

movl  %esp, %ebp

movl ST_MEM_SIZE(%ebp), %ecx #%ecx will hold the size
#we are looking for (which is the first

#and only parameter)

movl heap_begin, %eax #%eax will hold the current
#search location

movl current_break, %ebx  #%ebx will hold the current
#break
alloc_loop_begin: #here we iterate through each

#memory region

cmpl  %ebx, %eax #need more memory if these are equal
je move_break

#grab the size of this memory
movl HDR_SIZE_OFFSET(%eax), %edx
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#If the space is unavailable, go to the
cmpl  $UNAVAILABLE, HDR_AVAIL_OFFSET(%eax)
je next_location #next one

cmpl  %edx, %ecx #If the space is available, compare
jle  allocate_here #the size to the needed size. If its
#big enough, go to allocate_here

next_location:

addl $HEADER_SIZE, %eax #The total size of the memory

addl %edx, %eax #region is the sum of the size
#requested (currently stored
#in %edx), plus another 8 bytes
#for the header (4 for the
#AVAILABLE/UNAVAILABLE flag,
#and 4 for the size of the
#region). So, adding %edx and $8
#to %eax will get the address
#of the next memory region

jmp alloc_loop_begin #go look at the next location

allocate_here: #if we've made it here,
#that means that the
#region header of the region
#to allocate is in %eax

#mark space as unavailable

movl $UNAVAILABLE, HDR_AVAIL_OFFSET(%eax)

addl $HEADER_SIZE, %eax #move %eax past the header to
#the usable memory (since
#that's what we return)

movl  %ebp, %esp #return from the function

popl %ebp

ret

move_break: #if we've made it here, that

#means that we have exhausted
#all addressable memory, and
#we need to ask for more.
#%ebx holds the current
#endpoint of the data,
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#and %ecx holds its size

#fwe need to increase %ebx to
#where we _want_ memory
#to end, so we

addl $HEADER_SIZE, %ebx #add space for the headers
#structure

addl %ecx, %ebx #add space to the break for
#the data requested

#now its time to ask Linux
#for more memory

pushl %eax #save needed registers
pushl %ecx
pushl %ebx

movl $SYS_BRK, %eax #reset the break (%ebx has
#the requested break point)
int  $LINUX SYSCALL
#under normal conditions, this should
#return the new break in %eax, which
#will be either 0 if it fails, or
#it will be equal to or larger than
#we asked for. We don't care
#in this program where it actually
#sets the break, so as long as %eax
#isn't 0, we don't care what it is

cmpl  $0, %eax #check for error conditions
je error

popl %ebx #restore saved registers
popl %ecx

popl %eax

#set this memory as unavailable, since we're about to
#give it away

movl $SUNAVAILABLE, HDR_AVAIL_OFFSET(%eax)
#set the size of the memory

movl %ecx, HDR_SIZE OFFSET(%eax)

#move %eax to the actual start of usable memory.
#%eax now holds the return value
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addl $HEADER_SIZE, %eax

movl %ebx, current break #save the new break

movl  %ebp, %esp #return the function

popl %ebp

ret

error:

movl $0, %eax #on error, we return zero
movl  %ebp, %esp

popl %ebp

ret

HHAHHHHHEND OF FUNCTION##HHHHH#H

##tdeallocate##

#PURPOSE:

# The purpose of this function is to give back

# a region of memory to the pool after we're done
# using it.

#

#PARAMETERS:

# The only parameter is the address of the memory
# we want to return to the memory pool.

#

#RETURN VALUE:

# There is no return value

#

#PROCESSING:

If you remember, we actually hand the program the
start of the memory that they can use, which is
8 storage locations after the actual start of the
memory region. All we have to do is go back
8 locations and mark that memory as available,
# so that the allocate function knows it can use it.
.globl deallocate

.type deallocate,@function

#stack position of the memory region to free

.equ ST_MEMORY_SEG, 4

deallocate:

#since the function is so simple, we

#don't need any of the fancy function stuff

H HH HHF
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#get the address of the memory to free
#(normally this is 8(%ebp), but since
#we didn't push %ebp or move %esp to
#%ebp, we can just do 4(%esp)

movl ST _MEMORY_SEG(%esp), %eax

#get the pointer to the real beginning of the memory
subl $HEADER_SIZE, %eax

#mark it as available
movl $AVAILABLE, HDR_AVAIL_ OFFSET(%eax)

#Hreturn
ret
#HH#HHHHEND OF FUNCTION#H#HHHHHHHHTH#HH

The first thing to notice is that there is nstart symbol. The reason is that this is just a set of
functions. A memory manager by itself is not a full program - it doesn’t do anything. It is simply
a utility to be used by other programs.

To assemble the program, do the following:
as alloc.s -0 alloc.o

Okay, now let’s look at the code.

Variables and Constants

At the beginning of the program, we have two locations set up:

heap begin:
Jdong O

current_break:
Jdong O

Remember, the section of memory being managed is commonly referred toresafh@/hen we
assemble the program, we have no idea where the beginning of the heap is, nor where the current
break is. Therefore, we reserve space for their addresses, but just fill them with a 0 for the time
being.
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Next we have a set of constants to define the structure of the heap. The way this memory manager
works is that before each region of memory allocated, we will have a short record describing the
memory. This record has a word reserved for the available flag and a word for the region’s size.
The actual memory allocated immediately follows this record. The available flag is used to mark
whether this region is available for allocations, or if it is currently in use. The size field lets us

know both whether or not this region is big enough for an allocation request, as well as the
location of the next memory region. The following constants describe this record:

.equ HEADER_SIZE, 8
.equ HDR_AVAIL_OFFSET, 0
.equ HDR_SIZE_OFFSET, 4

This says that the header is 8 bytes total, the available flag is offset O bytes from the beginning,
and the size field is offset 4 bytes from the beginning. If we are careful to always use these
constants, then we protect ourselves from having to do too much work if we later decide to add
more information to the header.

The values that we will use for oawrailable  field are either O for unavailable, or 1 for
available. To make this easier to read, we have the following definitions:

.equ UNAVAILABLE, 0
.equ AVAILABLE, 1

Finally, we have our Linux system call definitions:

.equ BRK, 45
.equ LINUX_SYSCALL, 0x80

The allocate_init function

Okay, this is a simple function. All it does is set up tieap_begin andcurrent_break
variables we discussed earlier. So, if you remember the discussion earlier, the current break can
be found using therk system call. So, the function starts like this:

pushl %ebp
movl  %esp, %ebp

movl $SYS BRK, %eax
movl $0, %ebx

int  $LINUX_SYSCALL

Anyway, afterint $LINUX_SYSCALL , %eax holds the last valid address. We actually want the
first invalid address instead of the last valid address, so we just incréaeert Then we move
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that value to théneap_begin andcurrent_break  locations. Then we leave the function. The
code looks like this:

incl  %eax

movl %eax, current_break
movl %eax, heap_ begin
movl  %ebp, %esp

popl %ebp

ret

The heap consists of the memory betwéeap_begin andcurrent_break , so this says that
we start off with a heap of zero bytes. Qaliocate  function will then extend the heap as much
as it needs to when it is called.

The allocate